16 November 2017 **Biblioteca Almeida Garret** Porto, Portugal

Underwater Mining

Stef Kapusniak

2017 STRONGMAR CONFERENCE A SEA OF TECHNOLO

Inland 8. Offshore

Inland underwater mining

¡VAMOS! key data...

Start date End date Duration Original Budget Funding Number of participants

- : 1st February 2015
- : 31st July 2018
- : 42 months
- :€11.2 to12.7m
- :€ 9.2m
- :17

out of 9 European countries

Original Participants...

Objectives...

- 1) Specify and develop a prototype underwater, remotely controlled, mining machine with associated launch and recovery equipment.
- 2) Enhance currently available underwater sensing, spatial awareness, navigational and positioning technology to enable safe and confident operation of the equipment in an enclosed mine environment.
- **3)** Conduct field trials with the prototype equipment in abandoned and inactive mine sites with a range of rock types and at a range of submerged depths.
- 4) Evaluate the productivity and cost of operation on a multivariate basis and in a scalable manner to enable mineability and economic reassessment of the EU's mineral reserves.
- 5) Encourage market up-take by defining and overcoming the practicalities of the concept, proving the operational viability of the proposed techniques and developing a computer based tool which enables confident cost estimation of mining with the technique.

¡VAMOS! virtual view...

Virtual operational view from fusion of multiple sensory sources, allowing remote operation at night and in turbid water.

Prototype developed...

Grade measurement using LIBS...

- Built library using calibrated test samples and range of known ores
- Conducted blind testing to prove validity
- As sample tests have grown, spectral recognition has increased accuracy

Site alternatives...

- Imerys (site owner) asked us to move from Cornwall to Devon to the Whitehill North Yeo mine at Lee Moor
 - Similar material properties (range of soft) to hard cutting conditions)
 - But shallower (supposedly 45m)
- Field-test planning changed to reflect
- Bathymetry showed that water depth was shallower than advised (approx. 20m)
- Choice was either to...

Proceed at Lee Moor TEST SITE 1

Find another site and finish late

TEST SITE 2

innovation programme under grant agreement No 642477".

In the meantime INESC tested the PNA systems in advance in Bejanca (Northern Portugal)...

 NB – full trials at Bejanca previously ruled out due to inaccessibility for larger equipment

Potential reserve/contingency site...

In case we have import or other problems in Bosnia

First full equipment trial site... (Whitehill North Yeo Pit at Lee Moor in Devon)

Significant soft areas and difficulties setting up crane pad...

Excavating conditions...

Saturated sediments, requiring import of fill material and re-compaction of ground...

Site teams have persisted...

Site set up complete...

LARV modules linked together and deck equipment built up...

Mobilisation of MV...

Connection of hoses...

Installation of PNA systems...

Site set-up and equipment integration completed...

... from a mechanical and electrical perspective.

Anchors installed and LARV launched...

Launched AUV, bathymetry and topography survey...

Virtual reality view...

Real life view...

LARV floated out...

MV launched through the U-section...

Recovery of MV...

Sliding maintenance deck works well...

Positioning of launch and recovery vessel...

Landing the mining vehicle...

Positioning the LARV...

Total: 2.2 m North: 1.8 m East: -1.4 m

Large drift on the LARV on windy days

PNA system testing...

We have a working system...

Positive outcomes...

Managed to overcome civils problems and get good access into the Lee Moor pit
 Thanks to some key individuals from different partners working in a highly cooperative manner

LIBS

Library expanding, mineral differentiation capability increasing. Site owner very interested in ability to measure lithium content in waste material

- M3 multi-beam combined with SBL systems managed to map new workface Through highly turbid water with fine particle suspension ("Milky water")
- MV/Tracks/undercarriage works well Manoeuvrability good
- LARV and winch systems worked well
 Upgradable for industrial scale to provide more power and control response
- Slurry hose systems work well so far
- Blockage clearance system
 "Spit-out" facility worked well
- ECON
 Combined electrical systems interfaced well
- Control Cabin Integrated control systems worked well

Real time imaging/VR

Managed to cut material and measure volume and time

- Will process this data in T5.4
- Enabling costing and productivity extrapolation to industrial scale for WP6

Managed to process data in almost real time and provide good images to pilots

Next steps...

Smreka pit, Vares, BiH

- Need to accelerate our survey and define a robust test plan
 - in the light of our experiences so far
 - Based on more detailed bathymetric and physical information
- Need to improve PNA system in terms of auto-tuning
- Improved design of collection auger
- Advance and prove reliability of...
 - Aqua-hitch hydraulic tool connector
 - Pumping system
 - Conductance tomography system
- Wear monitoring system
- Continue development of LIBS system and ore recognition library

Low resolution sweep from Bosnia

Bathymetry shows flat bench areas and steep slopes Consistent with expected bench areas and minimum silt

Processing of test results...

This is one example of a key parameter which feeds nett productivity and costing in WP6

Instantaneous productivity

Subsea Mining resources...

There is now a focus on deeper offshore mining deposits similar to the move to extract oil and gas from deeper waters...

SMS

Polymetallic Nodules

Ferro-manganese crusts

Diamond & gold bearing gravels

Namibia

Alaska

- Rock Phosphate
- Namibia
 - Chatham Rise
- Mexico

- Red Sea muds
- Bismarck Sea
- Okinawa Trough
- SW Pacific Islands
- Canaries/Azores
- Mediterranean Sea
- Island territories across the world

- Indian Ocean SW Pacific Islands
- Clarion/Clippert on fracture zone
- Bay of Finland
- Black Sea

Lots of areas on seamounts and guyots

Shallower deposits...

Namibia...

Offshore mining of alluvial diamond deposits – to 150m depth

Distribution of kimberlite pipes, fissures, alluvial and offshore deposits

Nearshore alluvial mining...

Namibia...

Successful underwater alluvial mining machines

MK I Crawler

MK II Crawler

MK IV Crawler

Electronics Pod

Hydraulic Oil Compensators

Crawler Equipment

Successful underwater alluvial mining platforms

MV Peace in Africa

MV Sakawe Explorer

MV Kovambo

MV Ya Toivo

SMS deposits

Found in spreading centres and plate boundary areas around the world

Papua New Guinea...

Power & Control

Wet testing plan...

Machines moved from Duqm, Oman to Motukea Island, Papua New Guinea for wet testing in a dry dock

Two Types of Pilot-scale Mining Machines

Scale model of 1/20, with 20 t in air due to constraints of lifting/recovery capacity of Hakurei A-frame

- Drive : four crawlers
- Simultaneous cutting and gathering

(Designed and assembled by Mitsubishi Heavy Industry & Kayaba)

- Cutter head : road header type
- Drive : two crawlers
- Separately cutting and gathering

(Designed and assembled by Mitsui-Milke Machinery) Japan...

Road-map of the Offshore Project

Goal of government-funded program : offshore pilot-scale testing of integrated mining and lifting system in Izena Caldron of Okinawa in 2017.

- Sub-sea cutting/gathering tests with two types of machines and R&D of ore lifting system including loop tests respectively started in 2012 and 2013.
- Lifted ore dewatered onboard , shipped to the pilot-scale grinding/flotation circuit to yield two types of concentrates and finally processed in smelters.

Targets for Exploration of PMS within EEZ of Japan

Polymetallic Nodules...

- First lease taken by COMRA
- Second lease recently taken by China's Minmetals

South Korea...

Nodule mining prototypes

- Potato-picker design
- Tested to 1400m

MineRo 1 test robot

MineRo 2

Note that the Koreans have moved to 4-track system due to low bearing capacity of the sediments

Nodule mining prototypes

Some sub-assembly tests carried out at 5,000m

European Union...

Blue nodules project, multi-country involvement

Ukraine – nodule miner concept...

Subsidiary UK Seabed Resources

Exploration lease for nodules in CCZ – under UK membership of UNCLOS

Places to see...

MOROCCO

My wife's thoughts...

My thoughts...

One thing we both agree on...

Obrigado