Real-Time Current Profiles in Support of Offshore Oil and Gas Operations

Archie Todd Morrison III

Woods Hole Group

- Environmental consulting company
- Not to be confused with the Woods Hole Oceanographic Institution
 - But also located in Falmouth, Massachusetts
- Recently acquired (happily) by CLS in Toulouse

Some Motivation

```
The most exciting phrase to hear in science, the one that heralds new discoveries, is not 'Eureka!' (I found it!), but "That's funny . . . "

-Isaac Asimov (among others)
```

Gulf of Mexico - Bathymetry

The GoM Loop Current and Loop Current Eddies

- SSH Sea Surface Height
- Range: 1 meter
- Eddy Yankee separating
- Note older and counterrotating eddies
- LC and LCE speeds regularly exceed 4 knots!

Lease Blocks - US GoM

NTLs from MMS/BOEM/BSEE:

- Program began in 2006
- All O&G installations operating in water depths greater than 400 meters or "near" "significant" bathymetry (the Sigsbee Escarpment)
- Speed and direction profiles from near-surface to nearbottom or 1000 meters
- Near-bottom measurement if deeper than 1100 meters
- 20-minute ensembles reported to NDBC in "near-realtime"
- TRDI OO38
 - 1000 m range
 - 600 lb transducer
 - Deck box
 - ~50 conductor cable

Operational Environment

Early Systems

- Fixed frame
- Expensive, fragile, multiconductor cable
- Tie wraps
- No equipment protection
- Labor intensive, time consuming, launch and recovery
- Personnel safety issues

- OO38 UWEA
 precludes the need for
 a vulnerable, multi conductor, external
 data and power cable
- S/N "Zero"
- The gantry cradle and instrument sled protect the OO38 transducer during operation and maintenance
- WH300 tilted mount improves data quality

- Electro-mechanical cables carry data and power and support the mechanical load
- Slip rings
- Articulated A-frame separates personnel from the load
- The combination vastly improves personnel safety and launch and recovery times

- Design keeps personnel away from hazardous areas during operation
- Only two people are required for launch and recovery
- Automatic instrument shutdown during recovery to prevent damage

WHG ADCP Gantry System

- Acoustic Doppler Current Profilers (ADCPs)
- Instrument sled suspended from a gantry
- Upward looking 300kHz ADCP and downward looking 38kHz ADCP make the measurement
- A networked PC delivers the data in near real-time

NOT TO SCALE Sea Bed

Level winds and a new cable

Our own winch design – roller and helical drum

Fabrication Complete

Helix Q5000 Semi-Submersible

Installation

CCTV Display

Control Panel and

MARvelPlot **FADCP Data Display Operation** Stop Update Quit Woods Hole Group, Inc. www.woodsholegroup.com -Rig and Site Information-Helix Q5000 Block: MC 777 Well: #4 NDBC ID: 42901 Depth: 5625 ft feet -Date Range for Manual Update Start Date [YYYY / MM / DD 00:00:00] 2016 / 04 / 05 Set End Date [YYYY / MM / DD 23:59:59] 2016 / 04 / 11 Set Plot Span [days from End Date] 7 days Set Data Display Properties Near-Surface Depths **Deep Water Depths** 70 ft 21.3 m 56 2800 ft 853.4 m 80 ft 24.4 m 57 2850 ft 868.7 m 90 ft 27.4 m 58 2900 ft 883.9 m 59 2950 ft 899.2 m 10 100 ft 30.5 m 🖃 60 3000 ft 914.4 m -**Speed Limit Selection** 3 kts 1.5 m/s knots 4 kts 2.0 m/s

Speed and Direction Display

Variations on a theme

Data Delivery in Near-Real-Time

- Secure network or satellite connection
 - FTP to NDBC and WHG
 - Remote access
- Local distribution (CCTV or Website)
 - Graphics and text
 - Data export
 - Invaluable during operations
 - They don't want it and they cannot live without it
- Position and heading from navigation system or integrated GPS and compass

Success?

- In 2010, DeepStar commissioned a study of the first 5 years of the program
- We developed software tools, developed a database, and worked on the project for about a year
- We discovered that a substantial portion of the NTL database was compromised by metadata errors:
 - Incorrect latitude and longitude
 - Incorrect ADCP beam orientation
 - Instruments left in the water during rig moves
 - And more . . .

Incorrect ADCP Beam Orientation

Despite these problems . . .

- 151 site-years of good data in the first 5 years of the program (2006 to 2010)
- Reason to believe there are in-excess of 300 site-years of good data now (2017)
- The data are publically available from NDBC
 - http://www.ndbc.noaa.gov
- The data contribute to our understanding of how the GoM works and can be used to support
 - Safer operations and more robust vessel designs
 - Research, shipping, fishing, extraction, recreation
 - Search and rescue
 - Spill and severe weather response

And . . .

- We found 560 energetic features in the flow that were not expected
 - Strong near-surface currents with high velocity shears in subsurface layers (100m - 200m) - 290 events
 - Mid-water "jets" with no surface signature 88 events
 - Strong inertial oscillations at mid depths (~500m) 60 events
 - Strong inertial oscillations near the surface 28 events
 - "Slab" (vertically homogeneous) flows in wide layers (100s of meters vertically) 60 events

Strong near-surface currents with high velocity shear

Mid-water jets with no surface signature

Strong inertial oscillations at mid-depths

There's no substitute for making a measurement . . .

The most exciting phrase in science:

"That's funny . . . "

Questions?

