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1. Overview of Control Architectures

Autonomous Robot « Components:
N — Perception - sensing +
High-Level Control feature extraction +
. Control A(:Ehitecture b \ localization
3 1 — Low-Level Controller >
) actuator control to achieve
. Low-Level [ the desired movement in
Control 3 each DOF

— High-Level Controller > To
select the best action at each
environment state in order to fulfill the

(unknown, unstructured) mission

-#7~ Autonomous . - .
v Deliberative architectures

» Centralized architecture
» Sequential processing

(@]
. . o &2
* Symbolic representation Sensors&| = £ |§ ~Actuators
of the world 2l 3|8
» Hierarchical division of the mission 3 § g <

(Goal= SubGoal1, ..., SubGoalN)
v Suitable for structured or known or
static environments

Problems in unstructured or changing environments

% Symbolic Model of the world (precision and maintenance)
X Symbolic assignment

X Real time
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oc Deliberative architectures

Sense
VISION SYSTEM
Think ¢
STRIPS PLANNER
Act ¢
MOTOR CONTROL

*Shakey (1969), from the Stanford
research Institute.

*“sense-think-act” paradigm

*Thinking was accomplished with the
STRIPS planner.
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. World model:

—  All sensor information is fused into one global data structure

— ltcontains:
* An a priori representation of the environment the robot is operating in
+ Sensing information
+ Any additional cognitive knowledge needed to accomplish the goal

—  Problems:
* Closed world assumption: it contains everything the robot needs to know;

there can be no surprises.

*  Frame problem: representing a real-world situation in a way that is
computationally tractable; which part of the environment must be considered?

. Task/mission planner

—  To divide the goal mission in a set of tasks
. Path planning

— Toplan a trajectory that accomplishes a task
. Low-level controller

—  To execute the trajectory in the real world
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Nested Hierarchical Controller [Meystel 1990]

Mission | . .---""" : * :
Planner y |

,,,,,,,,, =
H goal === eeeeeceemme==-- s
: :

Mission .
Planner | | | MNavigator b------c-c==="=- . .
SENSE PLAN Navigator : /\ :

A S ;
World C path

Model/ it |
Knowledge Pilot e :
Base - 15T " . Pllot. | . i || «URTE2G ) T o .

=T  teeeeeoooli
H 1 path subsegment.

Low-level ACT : move 5 meters
Controller

!
i
>|
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UdG Robots Behaviour-based Architectures

« Decentralized Architecture

+ Mission division in simple Object grasping
behaviours sensors explore actuators

+ Parallel processing > Go to a point -

* Reactivity to the perceived Obstacle avoidance
environment

Advantages
No use of a symbolic model of the world

Real Time
Suitable for changing and unstructured environments
Problems

Selection and merging of behaviours ( maximizing robustness and
efficiency)

Decomposition of complex missions

€K«

X
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>/ alpha
b3 balance [E@>| 2Ph
%ﬁ pos
seer

» Genghis robotic hexapod (1989)

» 57 augmented finite state machines
implemented the Subsumption control
architecture

:

(B)

Figure 3.6

::::W’ M(Wmm:om Brooks.) (B) Genghis ll—s
SUCCERSOL L0 w(mmm

of IS Roboics, Somerville, MA.) oo 4

27~ Aut . .
e Hybrid Architectures

Organization in three layers:

deliberative layer
7y v — mission planning in several tasks
] — behaviour reconfiguration to
control execution accomplish the tasks
sensors 4 v actuators — real time

.l behaviours ’ — reactivity to the environment

* Most used architectures
v Advantages from both architecture philosophies
x Disadvantage: more complexity
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« Atlantis hybrid architecture from Jet Propulsion Laboratory [Gat 1991]

SENSORS ACTUATORS

Sojourner, Mars microrovers from NASA

-7~ Autonomous

Deliberative

Reactive

Hybri

UdG Robots Classification
 Functional decomposition
o 2o c » World model
Sensors—< | = |-E | 6 —Actuators + Planning
cl3lc B * Based on sense-model-plan-act
$ ‘23 g < « Predictable behavior
* Slow reaction.
Modify the world + Decomposition in parallel robot
Create maps Behaviors
Sensors — Discover new areas — Actuators *Absence of World model
» Based on sense-react
Wander * Fast reaction
Avoid Obstacles + a bit random behavior
EE— * World model
o g’ o Behavior n « Planning
Sensors-L—¢ % g Behavior 2 * Reactive execution
@2 Jlc —_——""" =>Actuators . prediction
$ Eo g Behavior 1 * Fast reaction
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Main features:

More features

— Independent Behaviors: “go _

to”, “avoid obstacles”, ... . ¢
H o

— Input: perceived state of the .| T R | actsaone

environment A T

. N
— Output: robot desired 5 A
VeIOCity S o
Behavior n R

— Coordination of behaviors —

Aut . .
fg Rgr?ontgmous Behavior-based architectures

Set of simple behaviours (i.e.: hardware
implemented)

Each behaviour acts independently:
asynchronously, in its own hardware.

Each behaviour represents and intention

of the robot: "go to a point”, “avoid obstacles”,
“follow the corridor”, ...

Inspiration from nature.

A coordinator selects at each time step the appropriate behaviour response.
Input: Information from sensors. The perceived environment is used as the best
representation of the world.

Internal states: behaviour can have different internal states, acting differently
according to them.

Output: n-dimensional (n DOFs) vector indicating the direction and speed to be
followed by the robot.
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The coordinator chooses the best behaviour output
from all active behaviours.

Coordination mechanisms can be classified in 2 groups:

Coordinator

— Coordinator
ehaviour \‘
—>{ s —»smons] >
+ Competitive Coordination < Cooperative Coordination
— Only one response is — The final response is a
chosen merging of all the behaviours

> Autonomous
UdG Robots Emergence

Obstacle avoidance ~ Gotopoint
behaviour response - behaviour response

|

—

Trajectory
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obstacles

-7~ Autonomous

UdG Robots

Emergence

Behaviours:

* go to point

* avoid moving
obstacle

« avoid wall

~——goal

Very high
repulsion

........
.............
............

Task example

+ Evaluation task: “To reach 3 goal-
points avoiding obstacles”

» Simulated environment using the
dynamics model of GARBI
underwater robot

* Predefined set of Behaviours to
fulfil the task.
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“Go To"” Behavior Obstacle Avoidance

BEHAVIOUR -BASED CONTROL ARCHITECTURE

VEHICLE SPEED

/| LOW-LEVEL

OBSTACLE AVOIDANCI

COORDINATION [ CONTROLLERS

AVOID TRAPPING

/

THRUSTER SPEEDS

Avoid Trapping

AUV
MODEL

UNDERWATER
ENVIRONMENT

POSITION AND ORIENTATION]

SONAR DISTANCES'
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UdG Robots Subsumption Architecture

COORDINATOR

vy
o]
ooz >

Sensors

—>

noEcdE~_3m

-
@;

R )

Actuators

—>

» Competitive coordination system. < The layers are implemented

» Each behaviour (layer) belongs to
a hierarchy.

* When top layers are active, they libraries.

cancel (inhibition nodes) or
substitute (suppression nodes)
the responses of lower layers.

with Augmented Finite State
Machine (FSM with registers
and timers) or with behavioural

* Principal developer: Rodney
Brooks (M.L.T.).
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* Hierarchy of behaviours:
1st. avoid obstacle
2nd. avoid trapping
3rd. go to goal

* Implementation with
suppression nodes.

7~ Autonomous
udG Robots More examples

Efficlent Learning of Reactive
Robot Behaviors with a

Neural-Q_learning approach

University of Girona
Spain

IROS 3002, Switzeriand

10
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-~ Autonomous
UdG Robots More examples

l . Pandora

Sonar-based Chain Following using
an Autonomous Underwater Vehicle

Ve

Universitat
4Girona

11
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3. Path Planning

R
Outlme"

. Bug algorithms

. Configuration space

. Potential functions — Wavefront planner
. Topological maps — Visibility graph

. Graph search - A* algorithm

. Cell decompositions
. Sampling-based algorithms

-7~ Autonomous .
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e They are inspired from insects
¢ Simple Bug behaviours:
o follow a wall
¢ move toward a goal
e Assumptions:
o the direction to the goal is known
o tactile sensors
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e Bug 0 algorithm:

1.
2.

head toward goal

follow obstacle (left or right) until

you can head toward the goal again
Goal

continue

L]
Start

-7~ Autonomous .
udG Robots Bug algorithms

e Bug 0 algorithm:

1.
2.

head toward goal

follow obstacle (left or right) until
you can head toward the goal again

continue

X__assume aleft-
turning robot
¢ The turning direction might
be decided beforehand..

13
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Bug algorithms

e Bug 0 algorithm:
1. head toward goal

2. follow obstacle (left or right) until
you can head toward the goal again

3. continue

What is the trajectory in this environment? goal

-7~ Autonomous .
udG Robots Bug algorithms

Adding some memory, it is possible to
improve Bug 0

e Bug 1 algorithm:
1. head toward goal

2. if an obstacle is encountered
circumnavigate it and remember how
close you get to the goal

3. return to that closest point and
continue

14
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Adding some memory, it is possible to
improve Bug 0

e Bug 1 algorithm:
1. head toward goal

2. if an obstacle is encountered
circumnavigate it and remember how

close you get to the goal .J
3. return to that closest point and
continue

-7~ Autonomous .
udG Robots Bug algorithms

Another possibility
e Bug 2 algorithm:
1. head toward goal on the m-line

2. if an obstacle is in the way, follow it
until you encounter the m-line again
closer to the goal

3. leave the obstacle and continue toward
the goal

15
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Another possibility
e  Bug 2 algorithm:
1. head toward goal on the m-line

2. if an obstacle is in the way, follow it
until you encounter the m-line again
closer to the goal

3. leave the obstacle and continue toward
the goal

m-line

-7~ Autonomous .
udG Robots Bug algorithms

| Bug 1 beats Bug 2 |

Bug 2 beats Bug 1

Bug 1 is an exhaustive search algorithm: it looks first all choices
Bug 2 is a greedy algorithm: it takes the first thing that looks better

16
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having range sensors...

e Tangent Bug algorithm:

— H 3 T
px,0)= Ag[uagol d(x, x 4+ A[cos®, sinf]"),

such that x + Afcos 6, sin0)" € | JWO,.
or:R*xS' > R

| plz,0), ifp(z,6)<R
Pr(z,0) = { o0, otherwise.

-7~ Autonomous .
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e Tangent Bug algorithm:
Discontinuity points:
oll OZI 031 O4I 051 061 071 08

Continuity intervals
0,2>0,, 0520,

05204, 0,204

17
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e Tangent Bug algorithm:

® Go0al

The robot moves towards gy, WO, blocks the goal
WO, does not block the goal What to do?
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e Tangent Bug algorithm:

The robot then moves toward the Oi that maximally decreases a heuristic distance to the goal.

choose O; that minimizes: d(x, Oi) +d(Oi, qgq,)

18
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e Tangent Bug algorithm:

Avoiding the obstacle:
PART 1: MOTION TO GOAL BEHAVIOUR

= > o

-7~ Autonomous .
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e Tangent Bug algorithm: ® Jg0al

Avoiding the obstacle:
PART 1: MOTION TO GOAL BEHAVIOUR
... until d starts increasing, then part 2

PART 2: BOUNDARY FOLLOWING
BEHAVIOUR
Follow the boundary until the
distance to goal from one )
reachable point O, (d,¢cn) is less |
than the distance to goal from
any past followed point.
Then, part 1.
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e Tangent Bug algorithm:

donoweq IS the shortest distance

between the boundary which

had been sensed and the goal.

d,.acn IS the distance between the goal and the closest point on the followed
obstacle that is within line of sight of the robot

Greach = ggl?d(ngab c).

-7~ Autonomous
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e Tangent Bug algorithm:

Input: A point robot with A range sensor
Output: A path to the gg,,; or & conclusion no such path exists
while True do
repeat
Continuously move toward the polnt n €IT, O, which nininlzes dix, a) * d{n, gl
until
the goal fa encountered or

. s W e

The goal is reached.

. The direction that minimizes dix, n) + din, Q) begins to increase di(x, @ueui)s 1.e., the
- H Chose a boundary following direction which continues in the same direction as the most recent
62 repeat

T: Continuously update d. .chs Tiglloweds and [(0;).

8: Continuously moves toward n €{0; ) that £s in the chosen boundary direction.

9:  until

-

.

Yhe robot completes a cycle around the cbstacle in which case the gcsal cannot be achieved.

dreach < dfollowed

10: end while

20
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e Tangent Bug algorithm:

Tangent Bug with zero sensor range

7~ Autonomous

UdG Robots Bug algorithms

e Tangent Bug algorithm:

Tangent Bug with finite sensor range

21
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e Tangent Bug algorithm:

Bug algorithms

Tangent Bug with infinite sensor range

-7~ Autonomous

UdG Robots

Potential functions

22
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¢ Finding the minimum:

-~ Autonomous
UdG Robots

The gradient of the total potential function indicates the way
to the goal:

é(t) = =VU(e(t))

since the total potential function depends on the number,
position and shape of the obstacles, there can be local
minimums!!

Solutions:

¢ to operate mathematically the functions to eliminate local
minimums - navigation functions

e to divide the space into a grid = brushfire algorithm and
wavefront planner

Potential functions

e Brushfire algorithm:

To compute the gradient of the repulsive functions
Define a grid on the space
Choose 4 or 8 point connectivity

al | w2 | w3 ol [ m2 | o3

M . % o [ S | 06

v [y © ol | o8 [ w

4 8
Obstacles start with a 1; free space zero

Until all cells >0; assign to all connected cells the minimum non-
zero value plus 1

The result is a map where each cell holds the minimum distance to
an obstacle

The gradient of distance is easily found by taking differences with all
neighbouring cells

23
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e Brushfire algorithm:
2D finite environment, 20x14 cells

-7~ Autonomous . .
UdG Robots Potential functions

e Brushfire algorithm:
with 4-point connectivity, 15t iteration

o|lo|o|o|o|o|o|o|o|o©

olOo|Oo(O|O|O|O|O|O|O|O

OolOo|OolO|0O|O|0O|O|O|O|O|O
o|lo|o|lo|o|o|o|o|o|o|o|O
Oo|lOo|Oo|lOo|O|O|0O|O|O|O|O|O
OolOo|Oo|lO|O|O|0O|O|O|O|O|OC
o|lo|o|lo|o|o|o|o|o|o|o|o
o|lo|o|lo|Oo|Oo|O|O|O|O|O|O
olOo|Oo|lOo|O|O|O|O|O|O

24



ions

ial funct

Potent

UEIG Robots

7~ Autonomous

Brushfire algorithm:

with 4-point connectivity, 2" iteration
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Brushfire algorithm:

with 4-point connectivity, 5t iteration

(o]
o~
o
o~
o
(o))

213(3(3|3|2

2(3(4(4(3|2(2|3[3]|2
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2(3(alalal3]2]2]3]a]a[3]2
2(3[3]3[3]3[3]3]3]3]3]2

2(2(2(2(2(2(2|2(2|2]|2
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Potential functions

e Brushfire algorithm:

with 8-point connectivity, 4t iteration

NINITWINININININININ

NINfWWw(Wwlww|(w|lw|w|N

2
3
3
3
3
3
3
3
3
3
3
2

NIWIARWININININW|A_(WN
NIWINININININ[Nwww|N
NlwWwwwwwwlw wlhiw|Nn
NIN[W WA IWIN

NINININININININININININ

NfwWwlwlw wwwl wlw|w
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Potential functions

e Wavefront planner:

Planner based on the brushfire algorithm

The algorithm starts from the goal position (labelled with a 2)
The “1” cells are not considered

The result is the distance to the goal (-2)

Gradient descent indicates the direction to go

Drawbacks

e The planner has to search the entire space

e Does not scale well in higher dimensions or big spaces!!
Computationally intractable. In 3D,

4-point connectivity - 6-point connectivity
8-point connectivity - 26-point connectivity

26
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Wavefront planner:

with 4-point connectivity, 1%t iteration
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Wavefront planner:

with 4-point connectivity, 10t iteration

0(0|(0|0(11({10({9|8|7 |8
0[{0(0|0|0(f11{10/9 (8|9
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e Wavefront planner:
with 4-point connectivity, 27t iteration

7 Aut . .
UdG Robots Potential functions

e Wavefront planner:
with 4-point connectivity, one shortest trajectory

ool o]~ vl ]

From starting point, gradient descent indicates direction to goal.

28
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e Wavefront planner:
with 8-point connectivity, 20t iteration

]
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e Wavefront planner:
with 8-point connectivity, one shortest trajectory

o]~

[NeR e R N o)l

=
o

[any
[N

[y
N

From starting point, gradient descent indicates direction to goal.
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Planning in topological maps

Topological map: simplified map with
only relationship between points. It
can be represented as a graph:

¢ nodes are real positions

e edges join positions in the free
space, they include the distance

It is easy to find a path in a
topological map. How to build a
topological map?

e Visibility graph
e Voronoi diagram
How to solve the graph?

e A* algorithm

e — —_—
Y N
\ N\
\ < . €83
',y cat /N
\ N
/ N\
\ / N\
\ / .
\ L \
\ 4 CB2 goal \\
. .
ntie! lg"/_ = 3 >
————
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Defined for a 2D polygonal configuration space

« The nodes v; of the visibility graph include the start location, the goal
location, and all the vertices of the configuration space obstacles.

+ The graph edges g; are straight-line segments that connect two line-of-
sight nodes v; and v;, i.e.,

eij 0 < svi+ (1 —5)v; € cl(Qree) Vs € [0, 1].

Gstart
[ ]

[
goal

»  Construction of the visibility graph with n nodes has complexity n3
for all nodes; for all potential edges; for all obstacle edges
wich can be reduced with the Rotational Plane Sweep Algorithm (n? log n).
+ Using the euclidean distance, the graph can be searched to find the
shortest distance.

{start

goal

31
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Visibility graph construction with brute force

-7~ Autonomous

udG Robots Top. Maps: Visibility Graph

32
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Top. Maps: Visibility Graph

-7~ Autonomous

UdG Robots

Top. Maps: Visibility Graph

intersects with any of the 9 obstacle edge?

33
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Top. Maps: Visibility Graph

Top. Maps: Visibility Graph

34
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vV .

-7~ Autonomous

udG Robots Top. Maps: Visibility Graph
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Rotational plane sweep algorithm

Algorithm for building the visibility graph in a total time complexity of n?
log n:

* A rotating half-line emanating from any vertex will be used to
determine the vertices which are visible.

* The half-line has to stop only in the directions in which there is a
vertex.

» Ateach vertex angle, a list of edges which intersect the beam will be
updated (list S).

» Since the line rotates following the sorted list of vertex angles, list &,
the updating of the S list consists only on adding or removing the
edges that contain the candidate vertex.

* Then, to determine if the vertex is visible, only intersection with lines
contained in the S list, that are closer than the candidate vertex,
have to be checked.

36
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Rotational plane sweep algorithm

5 Rotational Plane

Iagat: A set of vertices (v)) (vhose edges do ecot inteszsect) and a vestex V

Output: A subser of vertices frem (v;) thar are within line of sight of v

1: For each vestex v, calculate o, the angle from Lhe Roripostal axis to the lime seqment
W

71 Create tre vertex iist &, coatalelang the o, *s sozted in lncreasing ozde:z.

31 Create the active llst S. coatalaleq the sorted liat of edges that intersect the horizontal
Ralf-lire emasatisg from v,

41 for all &, do

51 Af v; is visible to v then

61 A3 the e3ge (v, v; Jto the visibility qraph.
7:  end if
£: if v, i3 the begiz=icg of a= edge, £, mot in S then

9: Ingert the X izte S.

101 end Ar

131 A v L5 the erd of an edge in S thea
3 Delete tre edge from S.

153:  end Af

i4: end for

-7~ Autonomous
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Rotational plane sweep algorithm

Initialization:
S={EE;}

Start Vs

e={a,, a,, a3 az}
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Rotational plane sweep algorithm

V2 Eg v, lteration 1, stop at a, .
S={EE4l
Vs E,
V.V, intersects with E,!
%
Start Vs Goal '

e={a,, a,, a3 az}
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Rotational plane sweep algorithm

V2 Eg

v, Iteration 2, stop at a, :
S={}
v, E,
V.V, is visible!
v,
Start [£] Goal !

e={a,, a,, a3 az}

38
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Rotational plane sweep algorithm

Iteration 3, stop ata,
S={E;, Ej}

V.V, does not intersect with
E,, itis visible!

e={ay, a, a3 az}

-7~ Autonomous

udG Robots Top. Maps: Visibility Graph

Rotational plane sweep algorithm

2 B, lteration 4, stop at a, :
S={E,, E,}
v, E,
S — V.V, intersects with E, and
Start Vs Goa!  E

e={a,, a,, a3 az}
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Top. Maps: Visibility Graph

Rotational plane sweep algorithm + A*

UdG Robots Graph search - A* algorithm
4.5

c 4.8
9.3 4.8

08 . 4.1

8.1 8.7,
S 3.5 133_5 39 b 9.8
4
4.7
f1s 84 87 @
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4.5

c d 48
93 48 g
4
8.8 57
8.1 87
s a 39 b
s a. 938
4
47
fis 8.4 87 @
Olist [[Nodes [ Cost | Clist [ Nodes | Backpointer
a 17 s -
c 18.1
19.7
45
c d 48
9.3 48 g
8.8 57 1
8.1 87
S a 3.9 b
35 13.5 o8
4
47
f1s 8.4 87 @
O list _ C list Nodes Backpointer
b 17.2 s -
c 18.1 a s
f 19.7
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4.5

c d 48
93 48 g
41
8.8 57
8.1 8.7
S a 3.9 b
s a. 938
4
47
fis 8.4 87 @
Olist [[Nedes | Cost | Clist [ Nodes | Backpointer
g 18.1 S _
f 19.7 a s
e 30.1 b a
o s
d (]
45
c d 28
93 48 g
8.8 57 1
8.1 8.7
S a 3.9 b
35 13.5 o8
4
47
f1s 8.4 87 @
O list _ C list Nodes Backpointer
f 19.7 s R
e 30.1 a s
b a
c s
d c
g d

43



7~ Autonomous o ) ;
vichs Research project: AUV topological path planning

- 2D Path planning from bathymetric maps for goal
achievement using topological information based on

homotopies.

AR

Bathymetric map
2D map Path in the workspace for each
homotopic class

-#7~ Autonomous g : :
vl Research project: AUV topological path planning

Homotopy Definition

+ Letp,, p,: [0, 1] = R? be two continuous paths. Then p, and
p, are homotopic with respect to a set of obstacles V € R? if
p, can be continuously deformed into p, while avoiding the

obstacles.
+ Example
2 2
P g g
123
S N

p; and p, are homotopic p, and p, are not homotopic
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-~ Autonomous

Research project: AUV topological path planning

From the workspace to the topological graph

Conversion of the metric workspace into a topological one using an extension of the
Jenkins method.

AN

a, s \\0’1
N l«/lz § \411 N
Workspace Reference frame Topological graph

The Leference frame is the link between the metric workspace and the topological
raph.
ny path can be described by the ordered sequence of the traversed segments in
the reference frame.
The topological graph is used to generate systematically, all the topological paths
(homotopy classes) discarding the duplicates and those which are ensured to self-
cross.

vl Research project: AUV topological path planning

Topologically guided path planning
Extension of the Jenkins B RS, o
method for allowing any f 2 g j‘v n,
class to be followed. oY v

A lower bound of the e ‘

optimal path can be
calculated for each
homotopy class.

The classes with smaller
lower bound can be
explored with a modified
version of the RRT
algorithm (HRRT) or the A*
algorithm (HA*) to find the
global optimal path.

18y, [ s N

\
HRRT: fast suboptimal path

45
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Topologically guided path planning

. . =3 \ B, o
+ Extension of the Jenkins SO (>

method for allowing any s S @ / —
class to be followed.

« A lower bound of the N D/ . T
optimal path can be ST SRS
calculated for each P,
homotopy class.

* The classes with smaller
lower bound can be
explored with a modified
version of the RRT
algorithm (HRRT) or the
A* algorithm (HA*) to find
the global optimal path.

q Be\"“’,

. | p
A*: slow but optimal path

-~ Autonomous

vl Research project: AUV topological path planning

Experimental results

- Test of the proposal in real conditions with SPARUSAYin a controlled
unknown environment to test its applicability to real applications.

75

Set up in the water tank of the UdG SPARUSAW

::

» MSIS configuration: 360° sector, 5m range with a 0.1m resolution and a 1.8
angular step.

» Dead-reckoning computed using the velocity readings coming from the DVL
E?(dFthe heading data obtained from the MRU sensor, both merged with an
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UdG Robots

Research project: AUV topological path planning

Preliminary experimental results

o Resultant OGM map with its reference frame and topological graph

-7~ Autonomous

=

UdG Robots

Homotopy class

Length (m)

a1pa2g
az, B,
Bayai,

B21 814

8.38
8.76
9.58
8.40

B,

Research project: AUV topological path planning
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> Autonomous
UdG Robots

Division of the free space in a set of
cells.

Adjacent cells share a boundary, and
based on this, an adjacency graph
can be built.

Path planning is done by first
determining the cells that contain the
start and goal positions, and then
finding a path within the adjacency
graph. The A* or other graph search
algorithms can be used.

The adjacency graph can also be
considered as a topological map.

Cell decomposition is often used for
coverage path planning.

Trapezoidal Decomposition

Cells that are shaped like trapezoids: 4
sides, and also triangles (1 side has 0-
length).

Only for polygonal obstacles, which
will have a set of vertices.

At each vertex v, an upper and/or
lower vertical edges appear, which will
generate the boundaries between
adjacent cells.

At each vertex v;, the adjacency graph
is also updated accordingly.

Cell decomposition

2

Cell decomposition

49
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UdG Robots Cell decomposition

Trapezoidal Decomposition

e Each cell has its corresponding graph
node.

e Cells which contain the start and goal
positions must be found.

e Planning will take place at the
adjacency graph.

¢ Midpoints will be used to translate the
plan found in the graph into the free
space.

-7~ Autonomous

UdG Robots

Cell decomposition

Trapezoidal Decomposition

e Each cell has its corresponding graph
node.

e Cells which contain the start and goal
positions must be found.

e Planning will take place at the
adjacency graph.

e Midpoints will be used to translate the
plan found in the graph into the free
space.
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vacl Cell decomposition

Trapezoidal Decomposition

In order to build cells, a vertical sweep line from left to right is used.
All vertices are sorted from left to right.

The sweep line stops at each vertex v; and a list L, containing intersected
edges, is updated.

By calculating the y coordinate of the intersection between the sweep line
and each vertex contained in L, we can easily know the upper (eyppgr) and
lower (e ower) €dges of the current vertex.

The update of L is done considering the 2 edges that belong to v;. If an
edge belongs to the list, it is removed; and if it is not in the list, it is added.

If both are not in L, the second vertex of each edge is used to sort them.

The edge on the left of the vertex edges in L will be e oy, and the edge
on the rigth will be e ppgg.

-7~ Autonomous

=

UdG Robots Cell decomposition

L:{eges3} L:{eg €0 €303}
Cupper® ~ €upper’ €13
€LowER" = €Lower" €3

51



7~ Autonomous o
vacl Cell decomposition

L:{eg €031} L:{eg 08281}
€UPPER® ~ €upper’ €12
€Lower: €3 €Lower: €o

-7~ Autonomous

UdG Robots Cell decomposition
€y e

) )
L:{e91e01e21e12} L:{e91e01e21e61e51e12}
Cupper’ €0 Cupper® €12
€LowER" ~ €Lower" €2
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vacl Cell decomposition

L:{es€1,8,€6/€5E12} L:{eq 68581}
€upper" €2 €upper* €6
€Lower" €9 €Lower: €9

-7~ Autonomous o
udG Robots Cell decomposition

L:{e91e4le7le61e51e12} L:{e91e4le51e12}
€upper’ €6 €upper’ €5
€Lower" €9 €Lower" €4
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L:{e 0,845,810}
€upper: €4
€LowEr" -

-7~ Autonomous

UdG Robots

Cell decomposition

L:{eipe4€5€11)
€ypper® -
€Lower* €5

Cell decomposition

€11
€10
€12

€12

L:{ejo €11}
€upper" €11
€Lower" €10

L:{>
€uppeR® ~
€LoWER" ~
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Boustrophedon decomposition

> Autonomous
UdG Robots

Similar than trapezoidal decom-
position but only vertices at which
vertical line can be extended up and
down are considered.

Cells are bigger, not trapezoidal.

Used for coverage path planning (i.e.
cleaning robots).

A lawnmower trajectory is followed
inside each cell.

Boustrophedon decomposition

Once the graph is generated, an
exhaustive walk is first determined
(depth-first search algorithm).

Then, explicit robot motions are
determined within each cell: straight
lines separated by one robot width
and short segments connecting
them.

Cell decomposition

1
'
1
1
1

Boustrophedon decomposition

Cell decomposition

Critical Points
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viclEE Research project: AUV coverage path planning

- Coverage path planning from
bathymetric maps for surveying
trajectories. Cell decomposition.

%~ Autonomous o ]
viclE Research project: AUV coverage path planning

cll

2 ‘ 21
!
12
; CE e
cl4
c8
" oy g le25
elo /vﬁ

o3 c7 ¢l
45
cl .

: e23 |
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(w) ydaqg

Region 2

-#7~ Autonomous o )
v Research project: AUV coverage path planning

(il A (i
l‘”

il

il
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Down-looking
imaging sensor

Surface
normal

Conservative,
safe altitude

rge angle of incidence,
distorted footprint

[

-#7~ Autonomous o )
v Research project: AUV coverage path planning

Identification of 2D and 3D Regions

58



59



7~ Autonomous S . ' i
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Mapping unknown structures without having prior information

7> Autonomous e : : !
vec I Research project: Online view planning

» World is represented using a labeled 2D grid map:

Oceplang ; i : Unseen space
i
Occluded space i
Sonar FOV
Occupied space
Empty space
Camera FOV : .
M|
HH
Viewed voxels EE : Path

60
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vichs Research project: Online view planning

* Voxel labeling strategy:

Occupied or empty?
Proportion thresholding Is it occluded?

Yes No

Abovy Below
Viewed? @ Next to empty? @

No Yes Yes No
=

-7~ Autonomous

v Research project: Online view planning

» Two types of viewpoints are generated:

Camera viewpoint

Range viewpoint \

\ e

Previous
path

61



7~ Autonomous o : ) ]
vichs Research project: Online view planning

» Surface normal computation:

L] [ ]
|

Perpendicular direction

Structure surface

Center of gravity

Target voxel =

Empty voxels nearby

* Viewpoint selection based on distance and orientation

+ Automatic sonar beam orientation

174

#Z~ Autonomous - Rasearch project: Online view planning

UdG Robots

» To plan safe paths that allow the vehicle to
achieve desired views, the Open Motion
Planning Library (OMPL) has been used: OM PL

State
Sampler validity
\ checker
Cost * Final solution uses RRT*
function sampling based planner

N in R2 space 175
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* The cost of a path corresponds to the integral of the risk function
along the path:

Risk map representation. Comparison between real map (left) and its
corresponding risk map representation (right)
176

0~ Autonomous

vecle Research project: Online view planning

» Path smoothing is applied:

Y
U = ussin(6)
0 = u,
Example of path smoothing. Original path Top view of the robot. World and robot
(black) and smoothed path (blue) coordinate frames 177
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» Line Of Sight (LOS) algorithm:

Intermediate END
goal s

Projection

START

Line Of Sight algorithm: the vehicle orients and

moves towards an intermediate goal 178
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Research project: Online view planning

WS Robot path
B Occupied voxel
B Viewed voxel

7> Autonomous

vec I Research project: Online view planning
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udG Robots Sampling-based algorithms

e For problems with a lot of Degrees of
Freedom or constraints (kinematic and
dynamic).

e Instead of finding an optimal solution
considering the whole environment,
only few samples are considered.

e Each sample is a robot configuration.

e Solution to path planning will be a
sequence of connected samples which
all bellong to Qg and connect the
start and goal positions.

e A procedure is used to determine if a
configuration is in Qe OF Not.

e Algorithms can also guarantee the
finding of the solution (completeness),
they are probabilistic completeness.

0~ Aut . .
vac Sampling-based algorithms

Probabilistic RoadMap planner

e Itis a multiple-query planner that creates a roadmap
in eree'

e Coarse sampling using a uniform random distribution
is used to obtain the nodes of the roadmap.

e The edges between nodes are planned, by a local
planner, with fine sampling to ensure that all
configurations belong to Q.

e Phases:
e Learning phase, to create the roadmap.

e Query phase, to plan particular paths between a
start and a goal configurations.

e Roadmap is represented by a graph G=(V,E); V:
vertices or nodes; E: edges generated by the local
planner that correspond to a collision-free path from
q; to g,. Simplest form of the local planner: the
straight line.

e In the query phase it and q,,, are connected to
two nodes ¢’ and q’ respectively. The planner
searches G for connecting q" and q", and generates
the path.

o




7~ Autonomous

UdG Robots Sampling-based algorithms
— . : .
Input:

0 : seaber of rodes Lo put i the roadsap

k3 scader of clozest reigibors o exanize for each comfigurastion
Outpat:

A roagaan G~ [V, F)

L v-e 09

-0

3: while 1V € n de

4 repeat

51 q = 4 random coafliguration ia Q

6: until ¢ iz collision-free
£ Ve Vulg)

1 end while

91 for all g ¢ V do

i N; — the k closest neighbora of q chosen from V scoording to dist
i for a3 ¢ ¢ N, @0

I Af (g, ') € E and O(q, q) #» NIL then

in E - EVvilg, 1

i4: end if

% ond for

it: end for

* Being A the local planner and dist a metric function to measure distance between two
configurations

-7~ Autonomous

udG Robots Sampling-based algorithms

Probabilistic RoadMap planner
e Roadmap in a 2D space, local planner: straight line planner, n=50, k=3.
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B N it Agorithm J: Solve Query Algorithn

UdG Robots

she inisisl configuration

the Qoal configurzation

ki the nuaber of closest Reighbors to oxaaline for each comfiguration
€ = (¥, B): the zoadnap computed Dy slgoriths 6

Cutput:

A path from Q¢ %0 Qe 0 fallure

1t Ngiair = the k closesat melghbors of @, from ¥V accozding to dist
2t Nggeay ™ Lhe k closest selghbora of @u,,: from ¥ according to disc

It Vo -lqurivigualv ¥

4: set ¢ o be the closest neighbor of quaix 18 Np,

i1 repeat

6 AL 819 9) # BIL then

7t B> (Quases ) VE

LB else

9 30t ¢’ to be the next closest roigidor of g, i= LN
10: end if

11! until a connection was succesful or the set Ny .i. Is empty

121 set ¢ %o be the closest neighbor of gyou: In X,N

171 repeat

M A Dlggeaie 91+ NIL then

15t B~ (Geoate I VE

16: welse

17: set ¢’ to be the next closest reighdor of g,.,; i& Yy
18: end if

197 uatil a connection was sucoestiul or the set x,.._‘ is empry

20: F o shoztest patR(qy,ive Ggeair O
211 AL P is nos ompty then

22:  zeturn J

201 elee

24: return falluse

%1 end if

-7~ Autonomous

udG Robots Sampling-based algorithms

Probabilistic RoadMap planner
¢ Query solved with a graph-search algorithm (i.e. A*)
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Single-Query Sampling-Based Planners

o Different approaches to build directly, without the roadmap, the path
between two configurations.

e For large number of degrees of freedom, or kinematic and dynamic
constraints.

¢ RRT algorithm (Rapidly-Exploring Random Trees)
e Most well known sampling algorithm
o 2trees, Ty and Ty, grow
rooted at g, and qg, respectively.
e A random configuration q,.q iS
sampled uniformly in Qfee-
e The nearest configuration g, is
found, and a new configuration (.,
is generated at a step_size distance
towards qzng-
®  (pew and the edge (Qnearr Anew) Must
belong to Qfee-

Aut q =
fg Robots Sampling-based algorithms

Single-Query Sampling-Based Planners
¢ RRT algorithm (Rapidly-Exploring Random Trees)




Single-Query Sampling-Based Planners
¢ RRT algorithm (Rapidly-Exploring Random Trees)

Single-Query Sampling-Based Planners
¢ RRT algorithm (Rapidly-Exploring Random Trees)
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Algorithm 10: Build RRT Algorithm

Input:
qp: the cenfiguration where the tree i3 rooted
n: the number of attempts to expand the tree
Output:
A tree T = (V, E) that is rooted at gy and has £ n configurations
2 Ve las]
E-0
for { = 1 to a do
Qrana = A randomly chosen free configuration
extend RRT (T, Qrang)
: end for
retura T

s W e

Algorithm 11: Extend RT Algorithm

Input:

T (V, E): an RRT

q:a configuration toward which the tree T ia grown

tput:

new configuration q.., toward g,or NIL in case of failure

Qrear — Closest neighbor of g in T

Grew — PXOgress Q..,. Dy step_size along the straight lime in Q between Q.... and .. 4
i &L Gpou is collision-free then

Ve vu (™

E = E U {(Qneazs Fnow

i oreturn g

end if
return NIL

WL A b W >8

-7~ Autonomous

UdG Robots Sampling-based algorithms

RRT algorithm

e The sampling is usually guided towards Qg (or Q) to improve the
efficiency:
*  with p probability: qng = Ggoal
e with (1-p) probability: grand = random uniform distribution

* Merging of trees, T,y and Tyqy,

Algorithm 13: Merge RRT Algorithm
Input:

T;: first RRY

T;1 second RRT

£: number of attempts allowed to merge T) and T

Cutput:

rerged Lf the two RRTa are connected to each other; failure otherwise
1: for i = 1 to £ do

a3 Qrana — @ zandemly chesen free configuration

3: Qrow, 1 — Oxtend RRT (T, Qr4na)

4: Af g, 1 * NIL then Tonit

5: Qrew, 2 — extend RAT (T2, Qrew, 1) T
5 goal
6: A€ dnew, 1 = Tnew, 2 then

T return nmerged _

8: end if

9: SKAZ(Ty, T3) q1 .

10: end if

1il: end for

12: retura failure Grand
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Sampling-based algorithms implementation details
¢ Straight-line local planner implementation:
¢ Discretization of the line according to a small step size.

e Collision checking strategies: incremental (left) and subdivision (right)
algorithms.

¢ Postprocessing queries to improve
shortness and smoothness.
e Greedy approach: connect
Qgoal from Qi if it fails try from
a closer position until it connects.
Once qgq, connected start again
with its directly connected position.

> Autonomous . .
UdG Robots Sampling-based algorithms

RRT algorithm, examples
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+ Solving start-to-goal queries to move through a breakwater

Bathymetry

2.6D elevation map using a multibeam
profiler sonar (Sant Feliu de Guixols).

Breakwater

A series of concrete blocks (14.5mx12m),
separated by four-meter gap. Average depth
of 7m.

-~ Autonomous

v Research project: AUV motion planning

+ Offline planning

dl

UnderWater Simulator (UWSim) [Prats-
IROS12]

o \ > i - : W= NS
RRT [LaValle96] RRT* [Karaman10]
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Research project: AUV motion planning

Motion constraints? Non-holonomic vehicle.

-7~ Autonomous

ey Mission points and gps data

Longitude
LI I |

,,
g

i

L
Latitude

* Research project: AUV motion planning

UdG Robots

» Motion constraints: kinodynamic motion planning

& = f(x,u)

q_start
g-newl q_randl
q_new2 s
%
q_rand2
00
10
-
q_goal
T W ™o ®

|

u.cos (V)
w.sin ()
r
*q_start
q_rand
q_new b d
™ &
i ” o - i ?: -g'oa!

........
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without
constraints

with
constraints

100
X, —
50 K B
/ . e 5
)
"y [ ]
00 |
]
— 7( -
200 > x _49’ =4
250 50 100 150 200 250

300

_ Latitude _

Latitude _

Mission points and gps data

" Longitude

Mission points and gps data

" longitude T T T
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Online path planning?

\
\

Low-level
controller

-—— -

Perception
Sensors

- - ——

Octomap

F " fask !
Information
\ Mi i ¢ request wp
\ ISSIONn ! wp
/l< Handler ;;ﬁ;
v S!an/lStop * \
\;:_ 5| Mapping Map |  Planning

Online RRT*-variant

Online Planning Framework
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Motion or differential constraints. Collision risk + path length
* Dubins curves (alternative) * Risk zones
* Integral of risk with respect

q=[x.y.yl—>qESEQ)=>qER xS to distance

q=f(g.u)

v.cos(y)
=| wv.sin(y)

r

< e ke

[Hernandez-IROS16]

= Motion Constraints.

. Optimization function: length and risk associated to a path
. Opportunistic collision and risk checking.

. Reuse of last best known solution.
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[Hernandez, Isteni¢ - Sensors16]

Towards autonomous exploration in confined
underwater environments

3D cave visualization

Mallios A., Ridao P., Ribas D., Carreras M., Camilli R.
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Research project: towards 3D motion planning

Research project: towards 3D motion planning
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Research project: towards 3D motion planning

HIL Simulation: Autonomous Guidance In a Cave

No A Priori Map Used * Real Time Path Planning under
Navigation towards a Goal Waypoint out Kinematic Constrains

of the cave * Real Time Octomap Mapping
Rotating Forward Looking Multibeam * Autonomous Guidance

-~ Autonomous

v Research project: AUV motion planning

Open Motion Planning Library (OMPL)

Copyright © 2010-2016, Rice University. All rights reserved.

Consist of different sampling-based motion planning algorithms.
Not collision checking or visualization tools included.

Not designed for any specific
scenario, collision checking done
with user-defined routines.

Support for kinodynamic motion
planning.

Support for commonly used state
spaces (SE(2), SE(3), R", etc.).
Extensible to user-defined state
spaces.

Taken from OMPL website: -
http://ompl.kavrakilab.org/
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