
1

Autonomous
Robots

XY

Z

X1

X2

Z1

Z2

•  Components:
–  Perception ! sensing +

feature extraction +
localization

–  Low-Level Controller !
actuator control to achieve
the desired movement in
each DOF

–  High-Level Controller ! To
select the best action at each
state in order to fulfill the
mission

environment
(unknown, unstructured)

Autonomous Robot

High-Level Control
or

Control Architecture

Perception Low-Level
Control

1. Overview of Control Architectures

Autonomous
Robots

•  Centralized architecture
•  Sequential processing
•  Symbolic representation

 of the world
•  Hierarchical division of the mission

 (Goal= SubGoal1, ..., SubGoalN)
 Suitable for structured or known or
 static environments

Problems in unstructured or changing environments
 Symbolic Model of the world (precision and maintenance)
 Symbolic assignment
 Real time

r
r
r

a

Deliberative architectures

S
en

si
ng

M
od

el
lin

g
P

la
nn

in
g

A
ct

io
n Sensors Actuators

2

Autonomous
Robots Deliberative architectures

• Shakey (1969), from the Stanford
research Institute.

• “sense-think-act” paradigm

• Thinking was accomplished with the
STRIPS planner.

Autonomous
Robots Deliberative architectures

•  World model:
–  All sensor information is fused into one global data structure
–  It contains:

•  An a priori representation of the environment the robot is operating in
•  Sensing information
•  Any additional cognitive knowledge needed to accomplish the goal

–  Problems:
•  Closed world assumption: it contains everything the robot needs to know;

there can be no surprises.
•  Frame problem: representing a real-world situation in a way that is

computationally tractable; which part of the environment must be considered?
•  Task/mission planner

–  To divide the goal mission in a set of tasks
•  Path planning

–  To plan a trajectory that accomplishes a task
•  Low-level controller

–  To execute the trajectory in the real world

3

Autonomous
Robots

•  Nested Hierarchical Controller [Meystel 1990]

Deliberative architectures

Autonomous
Robots

•  Decentralized Architecture
•  Mission division in simple

 behaviours
•  Parallel processing
•  Reactivity to the perceived

 environment
•  Advantages

 No use of a symbolic model of the world
 Real Time
 Suitable for changing and unstructured environments
 Problems
 Selection and merging of behaviours (maximizing robustness and
efficiency)
 Decomposition of complex missions

r

a
a
a

r

Behaviour-based Architectures

sensors actuators

Obstacle avoidance

Go to a point

explore

Object grasping

4

Autonomous
Robots Behaviour-based Architectures

•  Genghis robotic hexapod (1989)

•  57 augmented finite state machines
implemented the Subsumption control
architecture

Autonomous
Robots

 Organization in three layers:

•  Most used architectures
 Advantages from both architecture philosophies
 Disadvantage: more complexity r

a

Hybrid Architectures

sensors actuators
 behaviours

deliberative layer

 control execution

→ mission planning in several tasks
→ behaviour reconfiguration to
accomplish the tasks
→  real time
→  reactivity to the environment

5

Autonomous
Robots

•  Atlantis hybrid architecture from Jet Propulsion Laboratory [Gat 1991]

 Sojourner, Mars microrovers from NASA

Hybrid Architectures

Autonomous
Robots

H
yb

rid

•  Decomposition in parallel robot
Behaviors
•  Absence of World model
•  Based on sense-react
•  Fast reaction
•  a bit random behavior

Sensors Actuators

Modify the world
Create maps

Discover new areas
Wander

Avoid Obstacles

S
en

si
ng

 M

od
el

lin
g

P
la

nn
in

g

Sensors

Behavior 1

Behavior 2

Behavior n

Actuators

•  World model
•  Planning
•  Reactive execution
•  Prediction
•  Fast reaction

R
ea

ct
iv

e

S
en

si
ng

M
od

el
lin

g
P

la
nn

in
g

A
ct

io
n Sensors Actuators

•  Functional decomposition
•  World model
•  Planning
•  Based on sense-model-plan-act
•  Predictable behavior
•  Slow reaction. D

el
ib

er
at

iv
e

Classification

6

Autonomous
Robots 2. Behavior-based architectures

Main features:
–  Independent Behaviors: “go

to”, “avoid obstacles”, …
–  Input: perceived state of the

environment
– Output: robot desired

velocity
– Coordination of behaviors

Actuators

Behavior 1

Behavior 2

Behavior n

S
T
I
M
U
L
U
S

C
O
O
R
D
I
N
A
T
O
R

Sensors Actuators

Behavior 1Behavior 1

Behavior 2Behavior 2

Behavior nBehavior n

S
T
I
M
U
L
U
S

C
O
O
R
D
I
N
A
T
O
R

Sensors

X
vi,x

vi

Y

Z

vi,z

vi,yaw X
vi,x

vi

Y

Z

vi,z

vi,yaw

vi,x

vi

Y

Z

vi,z

vi,yaw

X

Y

X

Z

TOP VIEW LATERAL VIEW

viSi bibi

Autonomous
Robots

More features
•  Set of simple behaviours (i.e.: hardware

 implemented)
•  Each behaviour acts independently:

 asynchronously, in its own hardware.
•  Each behaviour represents and intention

 of the robot: ”go to a point”, “avoid obstacles”,
 “follow the corridor”,...

•  Inspiration from nature.
•  A coordinator selects at each time step the appropriate behaviour response.
•  Input: Information from sensors. The perceived environment is used as the best

representation of the world.
•  Internal states: behaviour can have different internal states, acting differently

according to them.
•  Output: n-dimensional (n DOFs) vector indicating the direction and speed to be

followed by the robot.

Behavior-based architectures

7

Autonomous
Robots Coordination

Behaviour 1

Behaviour 2

Behaviour 3

Coordinator
Behaviour 1

Behaviour 2

Behaviour 3

Coordinator

∑

•  Competitive Coordination
–  Only one response is

chosen

•  Cooperative Coordination
–  The final response is a

merging of all the behaviours

The coordinator chooses the best behaviour output
from all active behaviours.

Coordination mechanisms can be classified in 2 groups:

Autonomous
Robots Emergence

Obstacle avoidance
behaviour response

Go to point
behaviour response

Coordinated response Trajectory

+

8

Autonomous
Robots

obstacles

goal

wall

wall

Very high
repulsion

Behaviours:
•  go to point
•  avoid moving
obstacle
•  avoid wall

trajectory

Emergence

Autonomous
Robots Task example

•  Evaluation task: “To reach 3 goal-
points avoiding obstacles”

•  Simulated environment using the
dynamics model of GARBI
underwater robot

•  Predefined set of Behaviours to
fulfil the task.

9

Autonomous
Robots

“Go To” Behavior Obstacle Avoidance Avoid Trapping

Y R X R

Z G

Z R

GOAL
POINT

X G

Y G

V G OBSTACLE
Z G

X G

Y G
Y R X R

Z R

V O
PATH

Z G

X G

Y G
Y R X R

Z R

V T

AUV
MODEL OBSTACLE AVOIDANCE

AVOID TRAPPING

GO TO

COORDINATION LOW - LEVEL
CONTROLLERS

BEHAVIOUR - BASED CONTROL ARCHITECTURE

UNDERWATER
ENVIRONMENT

VEHICLE SPEED THRUSTER SPEEDS

POSITION AND ORIENTATION
SONAR DISTANCES

Task example

Autonomous
Robots

•  Competitive coordination system.

•  Each behaviour (layer) belongs to
a hierarchy.

•  When top layers are active, they
cancel (inhibition nodes) or
substitute (suppression nodes)
the responses of lower layers.

•  The layers are implemented
with Augmented Finite State
Machine (FSM with registers
and timers) or with behavioural
libraries.

•  Principal developer: Rodney
Brooks (M.I.T.).

Behaviour 1

Behaviour 2

Behaviour 4

I

S

S
T
I
M
U
L
U
S

Behaviour 3

S

Sensors

Actuators

COORDINATOR

Subsumption Architecture

10

Autonomous
Robots

•  Hierarchy of behaviours:
 1st. avoid obstacle
 2nd. avoid trapping
 3rd. go to goal

•  Implementation with
 suppression nodes.

Obstacle avoid.

Avoid Trapping

Go To

S

S

Subsumption Architecture

Autonomous
Robots More examples

11

Autonomous
Robots More examples

Autonomous
Robots More examples

12

Autonomous
Robots

Outline
•  Bug algorithms
•  Configuration space
•  Potential functions – Wavefront planner
•  Topological maps – Visibility graph
•  Graph search - A* algorithm
•  Cell decompositions
•  Sampling-based algorithms

3. Path Planning

Autonomous
Robots

•  They are inspired from insects

•  Simple Bug behaviours:

•  follow a wall

•  move toward a goal

•  Assumptions:

•  the direction to the goal is known

•  tactile sensors

Bug algorithms

13

Autonomous
Robots

•  Bug 0 algorithm:

1.  head toward goal

2.  follow obstacle (left or right) until
you can head toward the goal again

3.  continue

Bug algorithms

Autonomous
Robots

•  Bug 0 algorithm:

1.  head toward goal

2.  follow obstacle (left or right) until
you can head toward the goal again

3.  continue

Bug algorithms

14

Autonomous
Robots

•  Bug 0 algorithm:

1.  head toward goal

2.  follow obstacle (left or right) until
you can head toward the goal again

3.  continue

What is the trajectory in this environment?

Bug algorithms

Autonomous
Robots

Adding some memory, it is possible to
improve Bug 0

•  Bug 1 algorithm:

1.  head toward goal

2.  i f an obstacle is encountered
circumnavigate it and remember how
close you get to the goal

3.  return to that closest point and
continue

Bug algorithms

15

Autonomous
Robots

Adding some memory, it is possible to
improve Bug 0

•  Bug 1 algorithm:

1.  head toward goal

2.  i f an obstacle is encountered
circumnavigate it and remember how
close you get to the goal

3.  return to that closest point and
continue

Bug algorithms

Autonomous
Robots

Another possibility

•  Bug 2 algorithm:

1.  head toward goal on the m-line

2.  if an obstacle is in the way, follow it
until you encounter the m-line again
closer to the goal

3.  leave the obstacle and continue toward
the goal

m-line

Bug algorithms

16

Autonomous
Robots

Another possibility

•  Bug 2 algorithm:

1.  head toward goal on the m-line

2.  if an obstacle is in the way, follow it
until you encounter the m-line again
closer to the goal

3.  leave the obstacle and continue toward
the goal

m-line

Bug algorithms

Autonomous
Robots

Bug 1 is an exhaustive search algorithm: it looks first all choices

Bug 2 is a greedy algorithm: it takes the first thing that looks better

Bug algorithms

17

Autonomous
Robots

having range sensors...

•  Tangent Bug algorithm:

Bug algorithms

Autonomous
Robots

•  Tangent Bug algorithm:

Discontinuity points:

 O1, O2, O3, O4, O5, O6, O7, O8

Continuity intervals

 O1!O2, O3!O4

 O5!O6, O7!O8

Bug algorithms

18

Autonomous
Robots

•  Tangent Bug algorithm:

Bug algorithms

X

The robot moves towards qgoal
WO2 does not block the goal

X

WO1 blocks the goal
What to do?

Autonomous
Robots

•  Tangent Bug algorithm:

Bug algorithms

The robot then moves toward the Oi that maximally decreases a heuristic distance to the goal.

 choose Oi that minimizes: d(x, Oi) +d(Oi, qgoal)

19

Autonomous
Robots

•  Tangent Bug algorithm:

Bug algorithms

Avoiding the obstacle:
 PART 1: MOTION TO GOAL BEHAVIOUR

Autonomous
Robots

•  Tangent Bug algorithm:

Bug algorithms

Avoiding the obstacle:
 PART 1: MOTION TO GOAL BEHAVIOUR

 ... until d starts increasing, then part 2

 PART 2: BOUNDARY FOLLOWING

 BEHAVIOUR
 Follow the boundary until the
 distance to goal from one
 reachable point Oi (dreach) is less
 than the distance to goal from
 any past followed point.
 Then, part 1.

20

Autonomous
Robots

•  Tangent Bug algorithm:

dfollowed is the shortest distance

 between the boundary which

had been sensed and the goal.

dreach is the distance between the goal and the closest point on the followed
obstacle that is within line of sight of the robot

Bug algorithms

dfollowed

dreach

Autonomous
Robots

•  Tangent Bug algorithm:

Bug algorithms

21

Autonomous
Robots

•  Tangent Bug algorithm:

Tangent Bug with zero sensor range

Bug algorithms

Autonomous
Robots

•  Tangent Bug algorithm:

Tangent Bug with finite sensor range

Bug algorithms

22

Autonomous
Robots

•  Tangent Bug algorithm:

Tangent Bug with infinite sensor range

Bug algorithms

Autonomous
Robots

Potential functions

23

Autonomous
Robots

•  Finding the minimum:

•  The gradient of the total potential function indicates the way
to the goal:

•  since the total potential function depends on the number,
position and shape of the obstacles, there can be local
minimums!!

•  Solutions:

•  to operate mathematically the functions to eliminate local
minimums ! navigation functions

•  to divide the space into a grid ! brushfire algorithm and
wavefront planner

Potential functions

Autonomous
Robots

•  Brushfire algorithm:

•  To compute the gradient of the repulsive functions

•  Define a grid on the space

•  Choose 4 or 8 point connectivity

•  Obstacles start with a 1; free space zero

•  Until all cells >0; assign to all connected cells the minimum non-
zero value plus 1

•  The result is a map where each cell holds the minimum distance to
an obstacle

•  The gradient of distance is easily found by taking differences with all
neighbouring cells

Potential functions

24

Autonomous
Robots Potential functions

!! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !!
!! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !!
!! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !!
!! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !!
!! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !!
!! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !!
!! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !!
!! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !!
!! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !!
!! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !!
!! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !!
!! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !!
!! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !!
!! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !!

•  Brushfire algorithm:

2D finite environment, 20x14 cells

Autonomous
Robots Potential functions

1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!
1! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 1!
1! 0! 0! 0! 1! 1! 1! 1! 1! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 1!
1! 0! 0! 0! 1! 1! 1! 1! 1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 0! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 1! 1! 0! 0! 0! 0! 1!
1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!

•  Brushfire algorithm:

with 4-point connectivity, 1st iteration

25

Autonomous
Robots Potential functions

1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!
1! 2! 2! 2! 2! 2! 1! 1! 2! 2! 2! 2! 2! 2! 1! 1! 2! 2! 2! 1!
1! 2! 0! 0! 0! 2! 1! 1! 2! 0! 0! 0! 0! 2! 1! 1! 2! 0! 2! 1!
1! 2! 0! 0! 0! 0! 2! 2! 0! 0! 0! 0! 0! 2! 1! 1! 2! 0! 2! 1!
1! 2! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 2! 1! 1! 2! 0! 2! 1!
1! 2! 0! 0! 2! 2! 2! 2! 2! 0! 0! 0! 0! 2! 1! 1! 2! 0! 2! 1!
1! 2! 0! 2! 1! 1! 1! 1! 1! 2! 0! 0! 0! 2! 1! 1! 2! 0! 2! 1!
1! 2! 0! 2! 1! 1! 1! 1! 1! 2! 0! 0! 0! 0! 2! 2! 0! 0! 2! 1!
1! 2! 0! 0! 2! 2! 2! 1! 1! 2! 0! 0! 0! 0! 0! 0! 0! 0! 2! 1!
1! 2! 0! 0! 0! 0! 2! 1! 1! 2! 0! 0! 0! 0! 2! 0! 0! 0! 2! 1!
1! 2! 0! 0! 0! 0! 0! 2! 2! 0! 0! 0! 0! 2! 1! 2! 0! 0! 2! 1!
1! 2! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 2! 1! 1! 2! 0! 0! 2! 1!
1! 2! 2! 2! 2! 2! 2! 2! 2! 2! 2! 2! 1! 1! 1! 2! 2! 2! 2! 1!
1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!

•  Brushfire algorithm:

with 4-point connectivity, 2nd iteration

Autonomous
Robots Potential functions

1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!
1! 2! 2! 2! 2! 2! 1! 1! 2! 2! 2! 2! 2! 2! 1! 1! 2! 2! 2! 1!
1! 2! 3! 3! 3! 2! 1! 1! 2! 3! 3! 3! 3! 2! 1! 1! 2! 3! 2! 1!
1! 2! 3! 4! 4! 3! 2! 2! 3! 4! 4! 4! 3! 2! 1! 1! 2! 3! 2! 1!
1! 2! 3! 4! 3! 3! 3! 3! 3! 4! 5! 4! 3! 2! 1! 1! 2! 3! 2! 1!
1! 2! 3! 3! 2! 2! 2! 2! 2! 3! 4! 4! 3! 2! 1! 1! 2! 3! 2! 1!
1! 2! 3! 2! 1! 1! 1! 1! 1! 2! 3! 4! 3! 2! 1! 1! 2! 3! 2! 1!
1! 2! 3! 2! 1! 1! 1! 1! 1! 2! 3! 4! 4! 3! 2! 2! 3! 3! 2! 1!
1! 2! 3! 3! 2! 2! 2! 1! 1! 2! 3! 4! 5! 4! 3! 3! 4! 3! 2! 1!
1! 2! 3! 4! 3! 3! 2! 1! 1! 2! 3! 4! 4! 3! 2! 3! 4! 3! 2! 1!
1! 2! 3! 4! 4! 4! 3! 2! 2! 3! 4! 4! 3! 2! 1! 2! 3! 3! 2! 1!
1! 2! 3! 3! 3! 3! 3! 3! 3! 3! 3! 3! 2! 1! 1! 2! 3! 3! 2! 1!
1! 2! 2! 2! 2! 2! 2! 2! 2! 2! 2! 2! 1! 1! 1! 2! 2! 2! 2! 1!
1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!

•  Brushfire algorithm:

with 4-point connectivity, 5th iteration

26

Autonomous
Robots

•  Brushfire algorithm:

with 8-point connectivity, 4th iteration

Potential functions

1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!
1! 2! 2! 2! 2! 2! 1! 1! 2! 2! 2! 2! 2! 2! 1! 1! 2! 2! 2! 1!
1! 2! 3! 3! 3! 2! 1! 1! 2! 3! 3! 3! 3! 2! 1! 1! 2! 3! 2! 1!
1! 2! 3! 4! 3! 2! 2! 2! 2! 3! 4! 4! 3! 2! 1! 1! 2! 3! 2! 1!
1! 2! 3! 3! 3! 3! 3! 3! 3! 3! 3! 4! 3! 2! 1! 1! 2! 3! 2! 1!
1! 2! 3! 2! 2! 2! 2! 2! 2! 2! 3! 4! 3! 2! 1! 1! 2! 3! 2! 1!
1! 2! 3! 2! 1! 1! 1! 1! 1! 2! 3! 4! 3! 2! 1! 1! 2! 3! 2! 1!
1! 2! 3! 2! 1! 1! 1! 1! 1! 2! 3! 4! 3! 2! 2! 2! 2! 3! 2! 1!
1! 2! 3! 2! 2! 2! 2! 1! 1! 2! 3! 4! 3! 3! 3! 3! 3! 3! 2! 1!
1! 2! 3! 3! 3! 3! 2! 1! 1! 2! 3! 3! 3! 2! 2! 2! 3! 3! 2! 1!
1! 2! 3! 4! 4! 3! 2! 2! 2! 2! 3! 3! 2! 2! 1! 2! 3! 3! 2! 1!
1! 2! 3! 3! 3! 3! 3! 3! 3! 3! 3! 2! 2! 1! 1! 2! 3! 3! 2! 1!
1! 2! 2! 2! 2! 2! 2! 2! 2! 2! 2! 2! 1! 1! 1! 2! 2! 2! 2! 1!
1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!

Autonomous
Robots

•  Wavefront planner:

•  Planner based on the brushfire algorithm

•  The algorithm starts from the goal position (labelled with a 2)

•  The “1” cells are not considered

•  The result is the distance to the goal (-2)

•  Gradient descent indicates the direction to go

•  Drawbacks

•  The planner has to search the entire space

•  Does not scale well in higher dimensions or big spaces!!
Computationally intractable. In 3D,

 4-point connectivity ! 6-point connectivity

 8-point connectivity ! 26-point connectivity

Potential functions

27

Autonomous
Robots

•  Wavefront planner:

with 4-point connectivity, 1st iteration

Potential functions

1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!
1! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 0! 0! 0! 1! 1! 0! 2! 0! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 1!
1! 0! 0! 0! 1! 1! 1! 1! 1! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 1!
1! 0! 0! 0! 1! 1! 1! 1! 1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 0! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 1! 1! 0! 0! 0! 0! 1!
1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!

Autonomous
Robots Potential functions

1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!
1! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 0! 0! 0! 1! 1! 4! 3! 4! 1!
1! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 0! 0! 0! 1! 1! 3! 2! 3! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 1! 4! 3! 4! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 1! 5! 4! 5! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 1! 6! 5! 6! 1!
1! 0! 0! 0! 1! 1! 1! 1! 1! 0! 0! 0! 0! 0! 1! 1! 7! 6! 7! 1!
1! 0! 0! 0! 1! 1! 1! 1! 1! 0! 0! 0! 0! 11! 10! 9! 8! 7! 8! 1!
1! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 0! 0! 11! 10! 9! 8! 9! 1!
1! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 0! 0! 0! 11! 10! 9! 10! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 0! 11! 10! 11! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 11! 0! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 1! 1! 0! 0! 0! 0! 1!
1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!

•  Wavefront planner:

with 4-point connectivity, 10th iteration

28

Autonomous
Robots Potential functions

1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!
1! 29! 28! 27! 26! 25! 1! 1! 22! 21! 20! 19! 18! 17! 1! 1! 4! 3! 4! 1!
1! 28! 27! 26! 25! 24! 1! 1! 21! 20! 19! 18! 17! 16! 1! 1! 3! 2! 3! 1!
1! 27! 26! 25! 24! 23! 22! 21! 20! 19! 18! 17! 16! 15! 1! 1! 4! 3! 4! 1!
1! 26! 25! 24! 23! 22! 21! 20! 19! 18! 17! 16! 15! 14! 1! 1! 5! 4! 5! 1!
1! 25! 24! 23! 22! 21! 20! 19! 18! 17! 16! 15! 14! 13! 1! 1! 6! 5! 6! 1!
1! 26! 25! 24! 1! 1! 1! 1! 1! 16! 15! 14! 13! 12! 1! 1! 7! 6! 7! 1!
1! 27! 26! 25! 1! 1! 1! 1! 1! 15! 14! 13! 12! 11! 10! 9! 8! 7! 8! 1!
1! 28! 27! 26! 25! 24! 23! 1! 1! 16! 15! 14! 13! 12! 11! 10! 9! 8! 9! 1!
1! 27! 26! 25! 24! 23! 22! 1! 1! 17! 16! 15! 14! 13! 12! 11! 10! 9! 10! 1!
1! 26! 25! 24! 23! 22! 21! 20! 19! 18! 17! 16! 15! 14! 1! 12! 11! 10! 11! 1!
1! 27! 26! 25! 24! 23! 22! 21! 20! 19! 18! 17! 16! 1! 1! 13! 12! 11! 12! 1!
1! 28! 27! 26! 25! 24! 23! 22! 21! 20! 19! 18! 1! 1! 1! 14! 13! 12! 13! 1!
1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!

•  Wavefront planner:

with 4-point connectivity, 27th iteration

Autonomous
Robots Potential functions

1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!
1! 29! 28! 27! 26! 25! 1! 1! 22! 21! 20! 19! 18! 17! 1! 1! 4! 3! 4! 1!
1! 28! 27! 26! 25! 24! 1! 1! 21! 20! 19! 18! 17! 16! 1! 1! 3! 2! 3! 1!
1! 27! 26! 25! 24! 23! 22! 21! 20! 19! 18! 17! 16! 15! 1! 1! 4! 3! 4! 1!
1! 26! 25! 24! 23! 22! 21! 20! 19! 18! 17! 16! 15! 14! 1! 1! 5! 4! 5! 1!
1! 25! 24! 23! 22! 21! 20! 19! 18! 17! 16! 15! 14! 13! 1! 1! 6! 5! 6! 1!
1! 26! 25! 24! 1! 1! 1! 1! 1! 16! 15! 14! 13! 12! 1! 1! 7! 6! 7! 1!
1! 27! 26! 25! 1! 1! 1! 1! 1! 15! 14! 13! 12! 11! 10! 9! 8! 7! 8! 1!
1! 28! 27! 26! 25! 24! 23! 1! 1! 16! 15! 14! 13! 12! 11! 10! 9! 8! 9! 1!
1! 27! 26! 25! 24! 23! 22! 1! 1! 17! 16! 15! 14! 13! 12! 11! 10! 9! 10! 1!
1! 26! 25! 24! 23! 22! 21! 20! 19! 18! 17! 16! 15! 14! 1! 12! 11! 10! 11! 1!
1! 27! 26! 25! 24! 23! 22! 21! 20! 19! 18! 17! 16! 1! 1! 13! 12! 11! 12! 1!
1! 28! 27! 26! 25! 24! 23! 22! 21! 20! 19! 18! 1! 1! 1! 14! 13! 12! 13! 1!
1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!

•  Wavefront planner:

with 4-point connectivity, one shortest trajectory

From starting point, gradient descent indicates direction to goal.

29

Autonomous
Robots Potential functions

1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!
1! 21! 20! 19! 18! 18! 1! 1! 14! 14! 14! 14! 14! 14! 1! 1! 3! 3! 3! 1!
1! 21! 20! 19! 18! 17! 1! 1! 14! 13! 13! 13! 13! 13! 1! 1! 3! 2! 3! 1!
1! 21! 20! 19! 18! 17! 16! 15! 14! 13! 12! 12! 12! 12! 1! 1! 3! 3! 3! 1!
1! 21! 20! 19! 18! 17! 16! 15! 14! 13! 12! 11! 11! 11! 1! 1! 4! 4! 4! 1!
1! 21! 20! 19! 18! 17! 16! 15! 14! 13! 12! 11! 10! 10! 1! 1! 5! 5! 5! 1!
1! 21! 20! 19! 1! 1! 1! 1! 1! 13! 12! 11! 10! 9! 1! 1! 6! 6! 6! 1!
1! 21! 20! 19! 1! 1! 1! 1! 1! 13! 12! 11! 10! 9! 8! 7! 7! 7! 7! 1!
1! 21! 20! 19! 18! 17! 17! 1! 1! 13! 12! 11! 10! 9! 8! 8! 8! 8! 8! 1!
1! 21! 20! 19! 18! 17! 16! 1! 1! 13! 12! 11! 10! 9! 9! 9! 9! 9! 9! 1!
1! 21! 20! 19! 18! 17! 16! 15! 14! 13! 12! 11! 10! 10! 1! 10! 10! 10! 10! 1!
1! 21! 20! 19! 18! 17! 16! 15! 14! 13! 12! 11! 11! 1! 1! 11! 11! 11! 11! 1!
1! 21! 20! 19! 18! 17! 16! 15! 14! 13! 12! 12! 1! 1! 1! 12! 12! 12! 12! 1!
1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!

•  Wavefront planner:

with 8-point connectivity, 20th iteration

Autonomous
Robots Potential functions

1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!
1! 21! 20! 19! 18! 18! 1! 1! 14! 14! 14! 14! 14! 14! 1! 1! 3! 3! 3! 1!
1! 21! 20! 19! 18! 17! 1! 1! 14! 13! 13! 13! 13! 13! 1! 1! 3! 2! 3! 1!
1! 21! 20! 19! 18! 17! 16! 15! 14! 13! 12! 12! 12! 12! 1! 1! 3! 3! 3! 1!
1! 21! 20! 19! 18! 17! 16! 15! 14! 13! 12! 11! 11! 11! 1! 1! 4! 4! 4! 1!
1! 21! 20! 19! 18! 17! 16! 15! 14! 13! 12! 11! 10! 10! 1! 1! 5! 5! 5! 1!
1! 21! 20! 19! 1! 1! 1! 1! 1! 13! 12! 11! 10! 9! 1! 1! 6! 6! 6! 1!
1! 21! 20! 19! 1! 1! 1! 1! 1! 13! 12! 11! 10! 9! 8! 7! 7! 7! 7! 1!
1! 21! 20! 19! 18! 17! 17! 1! 1! 13! 12! 11! 10! 9! 8! 8! 8! 8! 8! 1!
1! 21! 20! 19! 18! 17! 16! 1! 1! 13! 12! 11! 10! 9! 9! 9! 9! 9! 9! 1!
1! 21! 20! 19! 18! 17! 16! 15! 14! 13! 12! 11! 10! 10! 1! 10! 10! 10! 10! 1!
1! 21! 20! 19! 18! 17! 16! 15! 14! 13! 12! 11! 11! 1! 1! 11! 11! 11! 11! 1!
1! 21! 20! 19! 18! 17! 16! 15! 14! 13! 12! 12! 1! 1! 1! 12! 12! 12! 12! 1!
1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!

•  Wavefront planner:

with 8-point connectivity, one shortest trajectory

From starting point, gradient descent indicates direction to goal.

30

Autonomous
Robots Potential functions

!

Autonomous
Robots

Planning in topological maps

•  Topological map: simplified map with
only relationship between points. It
can be represented as a graph:

•  nodes are real positions

•  edges join positions in the free
space, they include the distance

•  It is easy to find a path in a
topological map. How to build a
topological map?

•  Visibility graph

•  Voronoi diagram

•  How to solve the graph?

•  A* algorithm

Topological maps

31

Autonomous
Robots

Defined for a 2D polygonal configuration space

•  The nodes vi of the visibility graph include the start location, the goal
location, and all the vertices of the configuration space obstacles.

•  The graph edges eij are straight-line segments that connect two line-of-
sight nodes νi and νj, i.e.,

Top. Maps: Visibility Graph

Autonomous
Robots

•  Construction of the visibility graph with n nodes has complexity n3

 for all nodes; for all potential edges; for all obstacle edges

wich can be reduced with the Rotational Plane Sweep Algorithm (n2 log n).

•  Using the euclidean distance, the graph can be searched to find the
shortest distance.

Top. Maps: Visibility Graph

32

Autonomous
Robots Top. Maps: Visibility Graph

s
g

Visibility graph construction with brute force

Autonomous
Robots Top. Maps: Visibility Graph

s
g

33

Autonomous
Robots Top. Maps: Visibility Graph

s
g

Autonomous
Robots Top. Maps: Visibility Graph

s
g

intersects with any of the 9 obstacle edge?

34

Autonomous
Robots Top. Maps: Visibility Graph

s
g

Autonomous
Robots Top. Maps: Visibility Graph

s
g

35

Autonomous
Robots Top. Maps: Visibility Graph

s
g

Autonomous
Robots Top. Maps: Visibility Graph

s
g

36

Autonomous
Robots Top. Maps: Visibility Graph

s
g

Autonomous
Robots Top. Maps: Visibility Graph

Rotational plane sweep algorithm

Algorithm for building the visibility graph in a total time complexity of n2
log n:

•  A rotating half-line emanating from any vertex will be used to
determine the vertices which are visible.

•  The half-line has to stop only in the directions in which there is a
vertex.

•  At each vertex angle, a list of edges which intersect the beam will be
updated (list S).

•  Since the line rotates following the sorted list of vertex angles, list ε,
the updating of the S list consists only on adding or removing the
edges that contain the candidate vertex.

•  Then, to determine if the vertex is visible, only intersection with lines
contained in the S list, that are closer than the candidate vertex,
have to be checked.

37

Autonomous
Robots Top. Maps: Visibility Graph

Rotational plane sweep algorithm

Autonomous
Robots Top. Maps: Visibility Graph

Rotational plane sweep algorithm

Start

v1
v2

v3
v4

Goal

E1
E2

E3 Initialization:
S={E1,E2}

vs

ε={α1, α2, α3, α4}

38

Autonomous
Robots Top. Maps: Visibility Graph

Rotational plane sweep algorithm

Start

v1
v2

v3
v4

Goal

E1
E2

E3 Iteration 1, stop at α1 :
S={E1,E3}

VsV1 intersects with E1!

vs

ε={α1, α2, α3, α4}

Autonomous
Robots Top. Maps: Visibility Graph

Rotational plane sweep algorithm

Start

v1
v2

v3
v4

Goal

E1
E2

E3 Iteration 2, stop at α2 :
S={}

VsV2 is visible!

vs

ε={α1, α2, α3, α4}

39

Autonomous
Robots Top. Maps: Visibility Graph

Rotational plane sweep algorithm

Start

v1
v2

v3
v4

Goal

E1
E2

E3 Iteration 3, stop at α3 :
S={E1, E2}

VsV3 does not intersect with
E1, it is visible!

vs

ε={α1, α2, α3, α4}

Autonomous
Robots Top. Maps: Visibility Graph

Rotational plane sweep algorithm

Start

v1
v2

v3
v4

Goal

E1
E2

E3 Iteration 4, stop at α4 :
S={E1, E2}

VsV4 intersects with E1 and
E2!

vs

ε={α1, α2, α3, α4}

40

Autonomous
Robots Top. Maps: Visibility Graph

Rotational plane sweep algorithm + A*

!

Autonomous
Robots

.

.

a b

c d

e f

s

g

8.8

3.5

4.7
4

3.9

8.4

4.1
5.7

4.5
4.8

8.7 8.1

13.5

15 8.7

9.8

9.3 4.8

Graph search - A* algorithm

41

Autonomous
Robots

.

.

a b

c d

e f

s

g

8.8

3.5

4.7

4

3.9

8.4

4.1

5.7

4.5

4.8

8.7 8.1

13.5

15 8.7

9.8

9.3 4.8

Nodes Cost
a 17
c 18.1
f 19.7

Nodes Backpointer
s -

O list C list

Autonomous
Robots

.

.

a b

c d

e f

s

g

8.8

3.5

4.7

4

3.9

8.4

4.1

5.7

4.5

4.8

8.7 8.1

13.5

15 8.7

9.8

9.3 4.8

Nodes Cost
b 17.2
c 18.1
f 19.7

Nodes Backpointer
s -
a s

O list C list

42

Autonomous
Robots

.

.

a b

c d

e f

s

g

8.8

3.5

4.7

4

3.9

8.4

4.1

5.7

4.5

4.8

8.7 8.1

13.5

15 8.7

9.8

9.3 4.8

Nodes Cost
c 18.1
f 19.7

Nodes Backpointer
s -
a s
b a

O list C list

Autonomous
Robots

.

.

a b

c d

e f

s

g

8.8

3.5

4.7

4

3.9

8.4

4.1

5.7

4.5

4.8

8.7 8.1

13.5

15 8.7

9.8

9.3 4.8

Nodes Cost
d 18.1
f 19.7

Nodes Backpointer
s -
a s
b a
c s

O list C list

43

Autonomous
Robots

.

.

a b

c d

e f

s

g

8.8

3.5

4.7

4

3.9

8.4

4.1

5.7

4.5

4.8

8.7 8.1

13.5

15 8.7

9.8

9.3 4.8

Nodes Cost
g 18.1
f 19.7
e 30.1

Nodes Backpointer
s -
a s
b a
c s
d c

O list C list

Autonomous
Robots

.

.

a b

c d

e f

s

g

8.8

3.5

4.7

4

3.9

8.4

4.1

5.7

4.5

4.8

8.7 8.1

13.5

15 8.7

9.8

9.3 4.8

Nodes Cost
f 19.7
e 30.1

Nodes Backpointer
s -
a s
b a
c s
d c
g d

O list C list

44

Autonomous
Robots Research project: AUV topological path planning

!!2D!Path!planning!from!bathymetric!maps!for!goal!
achievement!using!topological!informa8on!based!on!
homotopies.!

Bathymetric map 2D map Path in the workspace for each
homotopic class

Autonomous
Robots Research project: AUV topological path planning

Homotopy Definition
•  Let p1, p2: [0, 1] → R2 be two continuous paths. Then p1 and

p2 are homotopic with respect to a set of obstacles V � R2 if
p1 can be continuously deformed into p2 while avoiding the
obstacles.

•  Example

s

g1p
2p

s

g
1p

2p

p1 and p2 are homotopic p1 and p2 are not homotopic

45

Autonomous
Robots Research project: AUV topological path planning

From the workspace to the topological
graph From!the!workspace!to!the!topological!graph!!

Conversion of the metric workspace into a topological one using an extension of the
Jenkins method.

The reference frame is the link between the metric workspace and the topological
graph.
Any path can be described by the ordered sequence of the traversed segments in
the reference frame.
The topological graph is used to generate systematically, all the topological paths
(homotopy classes) discarding the duplicates and those which are ensured to self-
cross.

1

3

4 2

1β

1α

2β

2α

1α 2α

s

g

1β

1α

2β

2α

p c

1b 2b

s

g

2l 1l

p

s

g

Workspace Reference frame Topological graph

Autonomous
Robots Research project: AUV topological path planning

Topologically guided path planning
•  Extension of the Jenkins

method for allowing any
class to be followed.

•  A lower bound of the
optimal path can be
calculated for each
homotopy class.

•  The classes with smaller
lower bound can be
explored with a modified
version of the RRT
algorithm (HRRT) or the A*
algorithm (HA*) to find the
global optimal path.

HRRT: fast suboptimal path

46

Autonomous
Robots Research project: AUV topological path planning

Topologically guided path planning

A*: slow but optimal path

•  Extension of the Jenkins
method for allowing any
class to be followed.

•  A lower bound of the
optimal path can be
calculated for each
homotopy class.

•  The classes with smaller
lower bound can be
explored with a modified
version of the RRT
algorithm (HRRT) or the
A* algorithm (HA*) to find
the global optimal path.

Autonomous
Robots Research project: AUV topological path planning

Experimental results

Set up in the water tank of the UdG

•  Test of the proposal in real conditions with SPARUSAUV in a controlled
unknown environment to test its applicability to real applications.

SPARUSAUV

•  MSIS configuration: 360º sector, 5m range with a 0.1m resolution and a 1.8
angular step.

•  Dead-reckoning computed using the velocity readings coming from the DVL
and the heading data obtained from the MRU sensor, both merged with an
EKF.

47

Autonomous
Robots Research project: AUV topological path planning

Preliminary experimental results
"  Resultant!OGM!map!with!its!reference!frame!and!topological!graph!

!

"  Homotopy classes and their paths in the workspace

11 12 ββ
00 21 αα

01 12 αβ
10 12 βα

Autonomous
Robots Research project: AUV topological path planning

48

Autonomous
Robots

b1
b2 b3

b4
b5

b6

b7

b8
b9

b10
b11

α1
0

β1
1

α2
0

α2
1

β2
2

α2
-1 α2

-2

α3
0

α3
-1

β3
1

α4
0

β4
1

α4
-1

α5
0

α5
1

β5
2

β5
3

α5
-1

α6
0

α6
-1

α6
-2

α6
1

β6
2

α7
0α7

1

β7
2

α7
-1

α7
-2

α8
0

β8
1

β8
2

α9
0

β9
1

β9
2

α9
-1

α10
0

β10
1

α11
0

β11
1

c
s

g

5
9
6
10
12

Research project: AUV topological path planning

Autonomous
Robots Research project: AUV topological path planning

b1
b2 b3

b4
b5

b6

b7

b8
b9

b10
b11

α1
0

β1
1

α2
0

α2
1

β2
2

α2
-1

α2
-2

α3
0

α3
-1

β3
1

α4
0

β4
1

α4
-1

α5
0

α5
1

β5
2

β5
3

α5
-1

α6
0

α6
-1

α6
-2

α6
1

β6
2

α7
0

α7
1

β7
2

α7
-1

α7
-2

α8
0

β8
1 β8

2

α9
0

β9
1

β9
2

α9
-1

α10
0

β10
1

α11
0

β11
1

c

s

g

11
15
1
31
46

49

Autonomous
Robots

•  Division of the free space in a set of
cells.

•  Adjacent cells share a boundary, and
based on this, an adjacency graph
can be built.

•  Path planning is done by first
determining the cells that contain the
start and goal positions, and then
finding a path within the adjacency
graph. The A* or other graph search
algorithms can be used.

•  The adjacency graph can also be
considered as a topological map.

•  Cell decomposition is often used for
coverage path planning.

Cell decomposition

Autonomous
Robots

Trapezoidal Decomposition

•  Cells that are shaped like trapezoids: 4
sides, and also triangles (1 side has 0-
length).

•  Only for polygonal obstacles, which
will have a set of vertices.

•  At each vertex vi, an upper and/or
lower vertical edges appear, which will
generate the boundaries between
adjacent cells.

•  At each vertex vi, the adjacency graph
is also updated accordingly.

Cell decomposition

50

Autonomous
Robots

Trapezoidal Decomposition

•  Each cell has its corresponding graph
node.

•  Cells which contain the start and goal
positions must be found.

•  Planning will take place at the
adjacency graph.

•  Midpoints will be used to translate the
plan found in the graph into the free
space.

Cell decomposition

Autonomous
Robots Cell decomposition

Trapezoidal Decomposition

•  Each cell has its corresponding graph
node.

•  Cells which contain the start and goal
positions must be found.

•  Planning will take place at the
adjacency graph.

•  Midpoints will be used to translate the
plan found in the graph into the free
space.

51

Autonomous
Robots

Trapezoidal Decomposition

•  In order to build cells, a vertical sweep line from left to right is used.

•  All vertices are sorted from left to right.

•  The sweep line stops at each vertex vi and a list L, containing intersected
edges, is updated.

•  By calculating the y coordinate of the intersection between the sweep line
and each vertex contained in L, we can easily know the upper (eUPPER) and
lower (eLOWER) edges of the current vertex.

•  The update of L is done considering the 2 edges that belong to vi. If an
edge belongs to the list, it is removed; and if it is not in the list, it is added.

•  If both are not in L, the second vertex of each edge is used to sort them.

•  The edge on the left of the vertex edges in L will be eLOWER, and the edge
on the rigth will be eUPPER.

Cell decomposition

Autonomous
Robots

e13

e3
e0

e8

Cell decomposition

L:{e8,e13}
eUPPER: -
eLOWER: -

L:{e8,e0,e3,e13}
eUPPER: e13
eLOWER: e8

e8

e13

52

Autonomous
Robots Cell decomposition

L:{e8,e0,e3,e12}
eUPPER: -
eLOWER: e3

L:{e8,e0,e2,e12}
eUPPER: e12
eLOWER: e0

e0

e8

e12

e3

e0

e8

e12

e2

Autonomous
Robots Cell decomposition

L:{e9,e0,e2,e6,e5,e12}
eUPPER: e12
eLOWER: e2

L:{e9,e0,e2,e12}
eUPPER: e0
eLOWER: -

e12

e2

e0

e9

e12

e5

e0

e9

e6

e2

53

Autonomous
Robots Cell decomposition

L:{e9,e6,e5,e12}
eUPPER: e6
eLOWER: e9

L:{e9,e1,e2,e6,e5,e12}
eUPPER: e2
eLOWER: e9

e12

e5

e1

e9

e6

e2

e12

e5

e6

e9

Autonomous
Robots Cell decomposition

L:{e9,e4,e7,e6,e5,e12}
eUPPER: e6
eLOWER: e9

e12

e5

e4

e9

e6

e7

L:{e9,e4,e5,e12}
eUPPER: e5
eLOWER: e4

e4

e9

e12

e5

54

Autonomous
Robots Cell decomposition

L:{e10,e4,e5,e12}
eUPPER: e4
eLOWER: -

e4

e10

e12

e5

L:{e10,e4,e5,e11}
eUPPER: -
eLOWER: e5

e4

e10

e11

e5

Autonomous
Robots Cell decomposition

L:{}
eUPPER: -
eLOWER: -

L:{e10,e11}
eUPPER: e11
eLOWER: e10

e11

e10

55

Autonomous
Robots

Boustrophedon decomposition

•  Similar than trapezoidal decom-
position but only vertices at which
vertical line can be extended up and
down are considered.

•  Cells are bigger, not trapezoidal.

•  Used for coverage path planning (i.e.
cleaning robots).

•  A lawnmower trajectory is followed
inside each cell.

Cell decomposition

Trapezoidal decomposition

Boustrophedon decomposition

Autonomous
Robots

Boustrophedon decomposition

•  Once the graph is generated, an
exhaustive walk is first determined
(depth-first search algorithm).

•  Then, explicit robot motions are
determined within each cell: straight
lines separated by one robot width
and short segments connecting
them.

Cell decomposition

56

Autonomous
Robots Research project: AUV coverage path planning

!!Coverage!path!planning!from%
bathymetric%maps%for%surveying%
trajectories.!Cell!decomposiGon.!
%
!

Coverage path in a cell!

Autonomous
Robots Research project: AUV coverage path planning

57

Autonomous
Robots Research project: AUV coverage path planning

Autonomous
Robots Research project: AUV coverage path planning

58

Autonomous
Robots Research project: AUV coverage path planning

Autonomous
Robots Research project: AUV coverage path planning

59

Autonomous
Robots Research project: AUV coverage path planning

Autonomous
Robots Research project: AUV coverage path planning

60

Autonomous
Robots Research project: Online view planning

???

Mapping unknown structures without having prior information

Autonomous
Robots

•  World is represented using a labeled 2D grid map:

Research project: Online view planning

61

Autonomous
Robots

•  Voxel labeling strategy:

Research project: Online view planning

Autonomous
Robots

Range viewpoint

Camera viewpoint

Previous
path

•  Two types of viewpoints are generated:

Research project: Online view planning

62

Autonomous
Robots

•  Surface normal computation:

•  Viewpoint selection based on distance and orientation

•  Automatic sonar beam orientation

174

Research project: Online view planning

Autonomous
Robots

•  To plan safe paths that allow the vehicle to
achieve desired views, the Open Motion
Planning Library (OMPL) has been used:

175

Path
planner

State
validity
checker

Cost
function

Sampler

•  Final solution uses RRT*
sampling based planner
in R2 space

Research project: Online view planning

63

Autonomous
Robots

•  The cost of a path corresponds to the integral of the risk function
along the path:

176

Risk map representation. Comparison between real map (left) and its
corresponding risk map representation (right)

Research project: Online view planning

Autonomous
Robots

•  Path smoothing is applied:

177

Top view of the robot. World and robot
coordinate frames

Example of path smoothing. Original path
(black) and smoothed path (blue)

Research project: Online view planning

64

Autonomous
Robots

178

START!

END!

•  Line Of Sight (LOS) algorithm:

Line Of Sight algorithm: the vehicle orients and
moves towards an intermediate goal

Projection

Intermediate
goal

Research project: Online view planning

Autonomous
Robots Research project: Online view planning

65

Autonomous
Robots Research project: Online view planning

Autonomous
Robots Research project: Online view planning

66

Autonomous
Robots

•  For problems with a lot of Degrees of
Freedom or constraints (kinematic and
dynamic).

•  Instead of finding an optimal solution
considering the whole environment,
only few samples are considered.

•  Each sample is a robot configuration.

•  Solution to path planning will be a
sequence of connected samples which
all bellong to Qfree and connect the
start and goal positions.

•  A procedure is used to determine if a
configuration is in Qfree or not.

•  Algorithms can also guarantee the
finding of the solution (completeness),
they are probabilistic completeness.

Sampling-based algorithms

Autonomous
Robots

Probabilistic RoadMap planner
•  It is a multiple-query planner that creates a roadmap

in Qfree.
•  Coarse sampling using a uniform random distribution

is used to obtain the nodes of the roadmap.

•  The edges between nodes are planned, by a local
planner, with fine sampling to ensure that all
configurations belong to Qfree.

•  Phases:
•  Learning phase, to create the roadmap.
•  Query phase, to plan particular paths between a

start and a goal configurations.

•  Roadmap is represented by a graph G=(V,E); V:
vertices or nodes; E: edges generated by the local
planner that correspond to a collision-free path from
q1 to q2. Simplest form of the local planner: the
straight line.

•  In the query phase, qinit and qgoal are connected to
two nodes q’ and q’’ respectively. The planner
searches G for connecting q’ and q’’, and generates
the path.

Sampling-based algorithms

67

Autonomous
Robots

•  Being Δ the local planner and dist a metric function to measure distance between two
configurations

Sampling-based algorithms

Ø
Ø

Autonomous
Robots

Probabilistic RoadMap planner

•  Roadmap in a 2D space, local planner: straight line planner, n=50, k=3.

Sampling-based algorithms

68

Autonomous
Robots Sampling-based algorithms

Autonomous
Robots

Probabilistic RoadMap planner

•  Query solved with a graph-search algorithm (i.e. A*)

Sampling-based algorithms

69

Autonomous
Robots Sampling-based algorithms

Single-Query Sampling-Based Planners
•  Different approaches to build directly, without the roadmap, the path

between two configurations.
•  For large number of degrees of freedom, or kinematic and dynamic

constraints.

•  RRT algorithm (Rapidly-Exploring Random Trees)
•  Most well known sampling algorithm
•  2 trees, Tinit and Tgoal, grow
rooted at qinit and qgoal respectively.
•  A random configuration qrand is
sampled uniformly in Qfree.
•  The nearest configuration qnear is
found, and a new configuration qnew

is generated at a step_size distance
towards qrand.
•  qnew and the edge (qnear, qnew) must
belong to Qfree.

Autonomous
Robots Sampling-based algorithms

Single-Query Sampling-Based Planners
•  RRT algorithm (Rapidly-Exploring Random Trees)

70

Autonomous
Robots Sampling-based algorithms

Single-Query Sampling-Based Planners
•  RRT algorithm (Rapidly-Exploring Random Trees)

Autonomous
Robots Sampling-based algorithms

Single-Query Sampling-Based Planners
•  RRT algorithm (Rapidly-Exploring Random Trees)

71

Autonomous
Robots Sampling-based algorithms

Ø

Autonomous
Robots Sampling-based algorithms

RRT algorithm
•  The sampling is usually guided towards qgoal (or qinit) to improve the

efficiency:
•  with p probability: qrand = qgoal
•  with (1-p) probability: qrand = random uniform distribution

•  Merging of trees, Tinit and Tgoal,

72

Autonomous
Robots Sampling-based algorithms

Sampling-based algorithms implementation details
•  Straight-line local planner implementation:

•  Discretization of the line according to a small step size.
•  Collision checking strategies: incremental (left) and subdivision (right)

algorithms.

•  Postprocessing queries to improve
shortness and smoothness.

•  Greedy approach: connect
qgoal from qinit, if it fails try from
a closer position until it connects.
Once qgoal connected start again
with its directly connected position.

Autonomous
Robots Sampling-based algorithms

RRT algorithm, examples

73

Autonomous
Robots

•  Solving start-to-goal queries to move through a breakwater

Bathymetry

2.5D elevation map using a multibeam
profiler sonar (Sant Feliu de Guixols).

Breakwater

A series of concrete blocks (14.5mx12m),
separated by four-meter gap. Average depth
of 7m.

Research project: AUV motion planning

Autonomous
Robots

•  Offline planning

UnderWater Simulator (UWSim) [Prats-
IROS12]

RRT [LaValle96] RRT* [Karaman10]

Research project: AUV motion planning

74

Autonomous
Robots

•  Motion constraints? Non-holonomic vehicle.

Research project: AUV motion planning

Autonomous
Robots

•  Motion constraints: kinodynamic motion planning

Research project: AUV motion planning

75

Autonomous
Robots

without
constraints

 with
constraints

Research project: AUV motion planning

Autonomous
Robots Research project: AUV motion planning

76

Autonomous
Robots Research project: AUV motion planning

Online path planning?

Autonomous
Robots Research project: AUV motion planning

77

Autonomous
Robots

Collision!risk!+!path!length!
•  Risk!zones!
•  Integral! of! risk! with! respect!

to!distance!

Mo2on!or!differen2al!constraints.!
•  Dubins!curves!(alterna8ve)!

q = [x, y,ψ]→ q ∈ SE(2)→ q ∈ℜ2 × S
!q = f (q,u)

!x
!y
!ψ

%

&

'
'
'

(

)

*
*
*
=

v.cos(ψ)
v.sin(ψ)

r

%

&

'
'
'

(

)

*
*
*

Research project: AUV motion planning

Autonomous
Robots

#  Mo8on!Constraints.!
#  Op8miza8on!func8on:!length!and!risk!associated!to!a!path!
#  Opportunis8c!collision!and!risk!checking.!
#  Reuse!of!last!best!known!solu8on.!

[Hernández-IROS16]

Research project: AUV motion planning

78

Autonomous
Robots

[Hernández, Istenič - Sensors16]

Research project: AUV motion planning

Autonomous
Robots Research project: towards 3D motion planning

79

Autonomous
Robots

17

Subdirección General de Proyectos de Investigación

MEMORIA CIENTÍFICO-TÉCNICA

Convocatoria de ayudas a PROYECTOS

EXPLORA « CIENCIA » y EXPLORA « TECNOLOGÍA »

2013

ANEXO II
Únicamente en caso de que se considere necesario para aclarar ciertos aspectos del proyecto, incorpore las imágenes
o figuras (formato TIFF, JPEG o GIF) a las que se haya hecho referencia en el texto.
Máximo 2 páginas
Respete la extensión máxima indicada. Recuerde que en virtud del artículo 11 de la convocatoria NO SE ACEPTARÁN
NI SERÁN SUBSANABLES MEMORIAS CIENTÍFICO-TÉCNICAS que no se presenten en este formato.

Fig.1 Submerged environment with strong 3D relieve (From left to Right): Cave, under ice, shipwreck and oil well.

Fig.2 Submerged Cave explored by Our team with a diver using a sensor rig (from left to rigth): Aerial photo; Cave
sketch; Horizontal view of the explored cave; 3D view of the explored cave.

Fig. 3. 3D Map of a convex submerged structure (from left to right): Bathymetry; Path obtained through coverage path
planning; Trajectory followed by the AUV and point cloud extrated from the MBES; Reconstructed 3D surface.

Research project: towards 3D motion planning

Autonomous
Robots

Im
age!credit:!Andreu!Llam

as!&
!Pepi!Caceres!

Research project: towards 3D motion planning

80

Autonomous
Robots

HIL Simulation: Autonomous Guidance In a Cave

•  No A Priori Map Used
•  Navigation towards a Goal Waypoint out

of the cave
•  Rotating Forward Looking Multibeam

•  Real Time Path Planning under
Kinematic Constrains

•  Real Time Octomap Mapping
•  Autonomous Guidance

Research project: towards 3D motion planning

Autonomous
Robots Research project: AUV motion planning

•  Consist!of!different!samplingJbased!mo8on!planning!algorithms.!
•  Not!collision!checking!or!visualiza8on!tools!included.!

Taken from OMPL website:
http://ompl.kavrakilab.org/

•  Not! designed! for! any! specific!
scenario,! collision! checking! done!
with!userJdefined!rou8nes.!

•  Support! for! kinodynamic! mo8on!
planning.!

•  Support! for! commonly! used! state!
spaces!(SE(2),!SE(3),!Rn,!etc.).!

•  Extensible! to! userJdefined! state!
spaces.!

Open!Mo2on!Planning!Library!(OMPL)!
Copyright!©!2010–2016,!Rice!University.!All!rights!reserved.!

81

Autonomous
Robots Bibliography

$  H. Choset et al. “Principles of Robot Motion”, MIT Press, 2005.

$  Ronald C. Arkin, “Behavior-Based Robotics”, MIT Press, 1998.

$  Bekey, George A., “Autonomous Robots: From Biological Inspiration to
Implementation and Control”, MIT Press, 2005

$  Murphy, Robin, “Introduction to AI robotics”. Cambridge [etc.] : MIT Press, cop.
2000

$  Dudek, Gregory, “Computational principles of mobile robotics”. Cambridge :
Cambridge University Press, 2000

$  R. Siegwart and I.R. Nourbakhsh, “Introduction to Autonomous Mobile Robots”, MIT
Press, 2004.

