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•  Components: 
–  Perception ! sensing + 

feature extraction + 
localization 

–  Low-Level Controller ! 
actuator control to achieve 
the desired movement in 
each DOF 

–  High-Level Controller !  To 
select the best action at each 
state in order to fulfill the 
mission 

 

environment 
(unknown, unstructured) 

Autonomous Robot 

High-Level Control 
or 

Control Architecture 

Perception Low-Level 
Control 

1. Overview of Control Architectures 

Autonomous 
Robots 

 
•  Centralized architecture 
•  Sequential processing 
•  Symbolic representation  

 of the world 
•  Hierarchical division of the mission 

 (Goal= SubGoal1, ..., SubGoalN) 
 Suitable for structured or known or  
 static environments 

Problems in unstructured or changing environments 
 Symbolic Model of the world (precision and maintenance) 
 Symbolic assignment 
 Real time 
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Autonomous 
Robots Deliberative architectures 

• Shakey (1969), from the Stanford 
research Institute. 

• “sense-think-act” paradigm 

• Thinking was accomplished with the 
STRIPS planner. 

Autonomous 
Robots Deliberative architectures 

•  World model: 
–  All sensor information is fused into one global data structure 
–  It contains: 

•  An a priori representation of the environment the robot is operating in 
•  Sensing information 
•  Any additional cognitive knowledge needed to accomplish the goal 

–  Problems: 
•  Closed world assumption: it contains everything the robot needs to know; 

there can be no surprises. 
•  Frame problem: representing a real-world situation in a way that is 

computationally tractable; which part of the environment must be considered? 
•  Task/mission planner 

–  To divide the goal mission in a set of tasks 
•  Path planning 

–  To plan a trajectory that accomplishes a task 
•  Low-level controller 

–  To execute the trajectory in the real world 
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Autonomous 
Robots 

•  Nested Hierarchical Controller [Meystel 1990] 

Deliberative architectures 

Autonomous 
Robots 

•  Decentralized Architecture 
•  Mission division in simple  

 behaviours 
•  Parallel processing 
•  Reactivity to the perceived  

 environment 
•  Advantages 

 No use of a symbolic model of the world 
 Real Time 
 Suitable for changing and unstructured environments 
 Problems 
 Selection and merging of behaviours ( maximizing robustness and 
efficiency) 
 Decomposition of complex missions 
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Behaviour-based Architectures 

sensors  actuators 

Obstacle avoidance 

Go to a point 

explore 

Object grasping 
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Autonomous 
Robots Behaviour-based Architectures 

•  Genghis robotic hexapod (1989) 

•  57 augmented finite state machines 
implemented the Subsumption control 
architecture 

Autonomous 
Robots 

 

 Organization in three layers: 

 

      

 

 

 

•  Most used architectures 
 Advantages from both architecture philosophies 
 Disadvantage: more complexity r 

a 

Hybrid Architectures 

sensors  actuators 
       behaviours  

deliberative layer 

 control execution 

→ mission planning in several tasks 
→ behaviour reconfiguration to 
accomplish the tasks   
→  real time     
→  reactivity to the environment 



5 

Autonomous 
Robots 

•  Atlantis hybrid architecture from Jet Propulsion Laboratory [Gat 1991] 

 Sojourner, Mars microrovers from NASA 

Hybrid Architectures 

Autonomous 
Robots 

H
yb
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•  Decomposition in parallel robot 
Behaviors 
•  Absence of World model 
•  Based on sense-react 
•  Fast reaction 
•  a bit random behavior 

Sensors                                             Actuators 

Modify the world 
Create maps 

Discover new areas 
Wander 

Avoid Obstacles 
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Sensors 

Behavior 1 

Behavior 2 

Behavior n 

Actuators 

•   World model 
•  Planning 
•  Reactive execution 
•  Prediction 
•  Fast reaction 
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•  Functional decomposition 
•  World model 
•  Planning 
•  Based on sense-model-plan-act 
•  Predictable behavior 
•  Slow reaction.  D
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Classification 
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Autonomous 
Robots 2. Behavior-based architectures 

Main features: 
–  Independent Behaviors: “go 

to”, “avoid obstacles”, … 
–  Input: perceived state of the 

environment 
– Output: robot desired 

velocity 
– Coordination of behaviors 

Actuators

Behavior 1

Behavior 2

Behavior n
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Autonomous 
Robots 

More features 
•  Set of simple behaviours (i.e.: hardware 

 implemented) 
•  Each behaviour acts independently:  

 asynchronously, in its own hardware. 
•  Each behaviour represents and intention  

 of the robot: ”go to a point”, “avoid obstacles”, 
 “follow the corridor”,... 

•  Inspiration from nature. 
•  A coordinator selects at each time step the appropriate behaviour response. 
•  Input: Information from sensors. The perceived environment is used as the best 

representation of the world.  
•  Internal states: behaviour can have different internal states, acting differently 

according to them.  
•  Output: n-dimensional (n DOFs) vector  indicating the direction and speed to be 

followed by the robot. 

Behavior-based architectures 



7 

Autonomous 
Robots Coordination 

Behaviour 1

Behaviour 2

Behaviour 3

Coordinator
Behaviour 1

Behaviour 2

Behaviour 3

Coordinator

∑

•  Competitive Coordination 
–  Only one response is 

chosen 

•  Cooperative Coordination 
–  The final response is a 

merging of all the behaviours 

The coordinator chooses the best behaviour output 
from all active behaviours. 

Coordination mechanisms can be classified in 2 groups: 

Autonomous 
Robots Emergence 

Obstacle avoidance 
behaviour response 

Go to point 
behaviour response 

Coordinated response Trajectory 

+ 
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Autonomous 
Robots 

obstacles 

goal 

wall 

wall 

Very high 
repulsion 

Behaviours: 
•  go to point 
•  avoid moving 
obstacle 
•  avoid wall 

trajectory 

Emergence 

Autonomous 
Robots Task example 

•  Evaluation task: “To reach 3 goal-
points avoiding obstacles” 

•  Simulated environment using the 
dynamics model of GARBI 
underwater robot 

•  Predefined set of Behaviours to 
fulfil the task. 
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Autonomous 
Robots 

“Go To” Behavior Obstacle Avoidance Avoid Trapping  

Y R X R 

Z G 

Z R 

GOAL  
POINT 

X G 

Y G 

V G OBSTACLE 
Z G 

X G 

Y G 
Y R X R 

Z R 

V O 
PATH 

Z G 

X G 

Y G 
Y R X R 

Z R 

V T 

AUV 
MODEL OBSTACLE AVOIDANCE 

AVOID  TRAPPING 

GO  TO 

COORDINATION LOW - LEVEL 
CONTROLLERS 

BEHAVIOUR - BASED CONTROL ARCHITECTURE 

UNDERWATER 
ENVIRONMENT 

VEHICLE SPEED THRUSTER SPEEDS 

POSITION AND ORIENTATION 
SONAR DISTANCES 

Task example 

Autonomous 
Robots 

•  Competitive coordination system. 

•  Each behaviour (layer) belongs to 
a hierarchy. 

•  When top layers are active, they 
cancel (inhibition nodes) or  
substitute (suppression nodes) 
the responses of lower layers. 

•  The layers are implemented 
with Augmented Finite State 
Machine (FSM with registers 
and timers) or with behavioural 
libraries. 

•  Principal developer:  Rodney 
Brooks (M.I.T.). 

Behaviour 1

Behaviour 2

Behaviour 4
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Sensors

Actuators

COORDINATOR

Subsumption Architecture 
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Autonomous 
Robots 

•  Hierarchy of behaviours: 
      1st. avoid obstacle 
      2nd. avoid trapping 
      3rd. go to goal 
  
•  Implementation with  
   suppression nodes. 
 

Obstacle avoid.

Avoid Trapping

Go To

S

S

Subsumption Architecture 

Autonomous 
Robots More examples 
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Autonomous 
Robots More examples 

Autonomous 
Robots More examples 
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Autonomous 
Robots 

Outline 
•  Bug algorithms 
•  Configuration space 
•  Potential functions – Wavefront planner  
•  Topological maps – Visibility graph 
•  Graph search - A* algorithm 
•  Cell decompositions 
•  Sampling-based algorithms 

3. Path Planning 

Autonomous 
Robots 

•  They are inspired from insects 

•  Simple Bug behaviours: 

•  follow a wall 

•  move toward a goal 

•  Assumptions: 

•  the direction to the goal is known 

•  tactile sensors 

Bug algorithms 



13 

Autonomous 
Robots 

•  Bug 0 algorithm: 

1.  head toward goal 

2.  follow obstacle (left or right) until 
you can head toward the goal again 

3.  continue 

 

Bug algorithms 

Autonomous 
Robots 

•  Bug 0 algorithm: 

1.  head toward goal 

2.  follow obstacle (left or right) until 
you can head toward the goal again 

3.  continue 

 

Bug algorithms 
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Autonomous 
Robots 

•  Bug 0 algorithm: 

1.  head toward goal 

2.  follow obstacle (left or right) until 
you can head toward the goal again 

3.  continue 

 

 

What is the trajectory in this environment? 

Bug algorithms 

Autonomous 
Robots 

Adding some memory, it is possible to 
improve Bug 0 

•  Bug 1 algorithm: 

1.  head toward goal 

2.  i f an obstacle is encountered 
circumnavigate it and remember how 
close you get to the goal 

3.  return to that closest point and 
continue 

 

Bug algorithms 
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Autonomous 
Robots 

Adding some memory, it is possible to 
improve Bug 0 

•  Bug 1 algorithm: 

1.  head toward goal 

2.  i f an obstacle is encountered 
circumnavigate it and remember how 
close you get to the goal 

3.  return to that closest point and 
continue 

 

Bug algorithms 

Autonomous 
Robots 

Another possibility 

•  Bug 2 algorithm: 

1.  head toward goal on the m-line 

2.  if an obstacle is in the way, follow it 
until you encounter the m-line again 
closer to the goal 

3.  leave the obstacle and continue toward 
the goal 

 

m-line 

Bug algorithms 
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Autonomous 
Robots 

Another possibility 

•  Bug 2 algorithm: 

1.  head toward goal on the m-line 

2.  if an obstacle is in the way, follow it 
until you encounter the m-line again 
closer to the goal 

3.  leave the obstacle and continue toward 
the goal 

 

m-line 

Bug algorithms 

Autonomous 
Robots 

Bug 1 is an exhaustive search algorithm: it looks first all choices 

Bug 2 is a greedy algorithm: it takes the first thing that looks better 

Bug algorithms 
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Autonomous 
Robots 

having range sensors... 

•  Tangent Bug algorithm: 

Bug algorithms 

Autonomous 
Robots 

•  Tangent Bug algorithm: 

Discontinuity points: 

 O1, O2, O3, O4, O5, O6, O7, O8 

 

Continuity intervals 

 O1!O2, O3!O4 

 O5!O6, O7!O8     

Bug algorithms 
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Autonomous 
Robots 

•  Tangent Bug algorithm: 

    

Bug algorithms 

X 

The robot moves towards qgoal 
WO2 does not block the goal 

X 

WO1 blocks the goal 
What to do? 

Autonomous 
Robots 

•  Tangent Bug algorithm: 

    

Bug algorithms 

The robot then moves toward the Oi that maximally decreases a heuristic distance to the goal. 
 

  choose Oi that minimizes: d(x, Oi) +d(Oi, qgoal) 
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Autonomous 
Robots 

•  Tangent Bug algorithm: 

    

Bug algorithms 

Avoiding the obstacle: 
          PART 1: MOTION TO GOAL BEHAVIOUR 

Autonomous 
Robots 

•  Tangent Bug algorithm: 

    

Bug algorithms 

Avoiding the obstacle: 
      PART 1: MOTION TO GOAL BEHAVIOUR 

 ... until d starts increasing, then part 2 
 
      PART 2: BOUNDARY FOLLOWING  

 BEHAVIOUR 
 Follow the boundary until the  
 distance to goal from one  
 reachable point Oi (dreach) is less 
 than the distance to goal from  
 any past followed point. 
 Then, part 1.  
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Autonomous 
Robots 

•  Tangent Bug algorithm: 

 

dfollowed is the shortest distance 

 between the boundary which  

had been sensed and the goal. 

 

 

 

dreach is the distance between the goal and the closest point on the followed 
obstacle that is within line of sight of the robot 

Bug algorithms 

dfollowed 

dreach 

Autonomous 
Robots 

•  Tangent Bug algorithm: 

 

Bug algorithms 
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Autonomous 
Robots 

•  Tangent Bug algorithm: 

Tangent Bug with zero sensor range 

Bug algorithms 

Autonomous 
Robots 

•  Tangent Bug algorithm: 

Tangent Bug with finite sensor range 

Bug algorithms 
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Autonomous 
Robots 

•  Tangent Bug algorithm: 

Tangent Bug with infinite sensor range 

Bug algorithms 

Autonomous 
Robots 

 

 

 

 

 

 

 

 

 

  

  

Potential functions 
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Autonomous 
Robots 

•  Finding the minimum: 

•  The gradient of the total potential function indicates the way 
to the goal: 

•  since the total potential function depends on the number, 
position and shape of the obstacles, there can be local 
minimums!! 

•  Solutions: 

•  to operate mathematically the functions to eliminate local 
minimums ! navigation functions 

•  to divide the space into a grid ! brushfire algorithm and 
wavefront planner 

Potential functions 

Autonomous 
Robots 

•  Brushfire algorithm: 

•  To compute the gradient of the repulsive functions 

•  Define a grid on the space 

•  Choose 4 or 8 point connectivity 

•  Obstacles start with a 1; free space zero 

•  Until all cells >0; assign to all connected cells the minimum non-
zero value plus 1 

•  The result is a map where each cell holds the minimum distance to 
an obstacle 

•  The gradient of distance is easily found by taking differences with all 
neighbouring cells 

Potential functions 
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Autonomous 
Robots Potential functions 

!! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !!
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•  Brushfire algorithm: 

2D finite environment, 20x14 cells 

Autonomous 
Robots Potential functions 

1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!
1! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 1!
1! 0! 0! 0! 1! 1! 1! 1! 1! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 1!
1! 0! 0! 0! 1! 1! 1! 1! 1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 0! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 1! 1! 0! 0! 0! 0! 1!
1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!

 

•  Brushfire algorithm: 

with 4-point connectivity, 1st iteration 
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Autonomous 
Robots Potential functions 

1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!
1! 2! 2! 2! 2! 2! 1! 1! 2! 2! 2! 2! 2! 2! 1! 1! 2! 2! 2! 1!
1! 2! 0! 0! 0! 2! 1! 1! 2! 0! 0! 0! 0! 2! 1! 1! 2! 0! 2! 1!
1! 2! 0! 0! 0! 0! 2! 2! 0! 0! 0! 0! 0! 2! 1! 1! 2! 0! 2! 1!
1! 2! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 2! 1! 1! 2! 0! 2! 1!
1! 2! 0! 0! 2! 2! 2! 2! 2! 0! 0! 0! 0! 2! 1! 1! 2! 0! 2! 1!
1! 2! 0! 2! 1! 1! 1! 1! 1! 2! 0! 0! 0! 2! 1! 1! 2! 0! 2! 1!
1! 2! 0! 2! 1! 1! 1! 1! 1! 2! 0! 0! 0! 0! 2! 2! 0! 0! 2! 1!
1! 2! 0! 0! 2! 2! 2! 1! 1! 2! 0! 0! 0! 0! 0! 0! 0! 0! 2! 1!
1! 2! 0! 0! 0! 0! 2! 1! 1! 2! 0! 0! 0! 0! 2! 0! 0! 0! 2! 1!
1! 2! 0! 0! 0! 0! 0! 2! 2! 0! 0! 0! 0! 2! 1! 2! 0! 0! 2! 1!
1! 2! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 2! 1! 1! 2! 0! 0! 2! 1!
1! 2! 2! 2! 2! 2! 2! 2! 2! 2! 2! 2! 1! 1! 1! 2! 2! 2! 2! 1!
1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!

 

•  Brushfire algorithm: 

with 4-point connectivity, 2nd iteration 

Autonomous 
Robots Potential functions 

1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!
1! 2! 2! 2! 2! 2! 1! 1! 2! 2! 2! 2! 2! 2! 1! 1! 2! 2! 2! 1!
1! 2! 3! 3! 3! 2! 1! 1! 2! 3! 3! 3! 3! 2! 1! 1! 2! 3! 2! 1!
1! 2! 3! 4! 4! 3! 2! 2! 3! 4! 4! 4! 3! 2! 1! 1! 2! 3! 2! 1!
1! 2! 3! 4! 3! 3! 3! 3! 3! 4! 5! 4! 3! 2! 1! 1! 2! 3! 2! 1!
1! 2! 3! 3! 2! 2! 2! 2! 2! 3! 4! 4! 3! 2! 1! 1! 2! 3! 2! 1!
1! 2! 3! 2! 1! 1! 1! 1! 1! 2! 3! 4! 3! 2! 1! 1! 2! 3! 2! 1!
1! 2! 3! 2! 1! 1! 1! 1! 1! 2! 3! 4! 4! 3! 2! 2! 3! 3! 2! 1!
1! 2! 3! 3! 2! 2! 2! 1! 1! 2! 3! 4! 5! 4! 3! 3! 4! 3! 2! 1!
1! 2! 3! 4! 3! 3! 2! 1! 1! 2! 3! 4! 4! 3! 2! 3! 4! 3! 2! 1!
1! 2! 3! 4! 4! 4! 3! 2! 2! 3! 4! 4! 3! 2! 1! 2! 3! 3! 2! 1!
1! 2! 3! 3! 3! 3! 3! 3! 3! 3! 3! 3! 2! 1! 1! 2! 3! 3! 2! 1!
1! 2! 2! 2! 2! 2! 2! 2! 2! 2! 2! 2! 1! 1! 1! 2! 2! 2! 2! 1!
1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!

 

•  Brushfire algorithm: 

with 4-point connectivity, 5th iteration 
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Autonomous 
Robots 

 

•  Brushfire algorithm: 

with 8-point connectivity, 4th iteration 

Potential functions 

1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!
1! 2! 2! 2! 2! 2! 1! 1! 2! 2! 2! 2! 2! 2! 1! 1! 2! 2! 2! 1!
1! 2! 3! 3! 3! 2! 1! 1! 2! 3! 3! 3! 3! 2! 1! 1! 2! 3! 2! 1!
1! 2! 3! 4! 3! 2! 2! 2! 2! 3! 4! 4! 3! 2! 1! 1! 2! 3! 2! 1!
1! 2! 3! 3! 3! 3! 3! 3! 3! 3! 3! 4! 3! 2! 1! 1! 2! 3! 2! 1!
1! 2! 3! 2! 2! 2! 2! 2! 2! 2! 3! 4! 3! 2! 1! 1! 2! 3! 2! 1!
1! 2! 3! 2! 1! 1! 1! 1! 1! 2! 3! 4! 3! 2! 1! 1! 2! 3! 2! 1!
1! 2! 3! 2! 1! 1! 1! 1! 1! 2! 3! 4! 3! 2! 2! 2! 2! 3! 2! 1!
1! 2! 3! 2! 2! 2! 2! 1! 1! 2! 3! 4! 3! 3! 3! 3! 3! 3! 2! 1!
1! 2! 3! 3! 3! 3! 2! 1! 1! 2! 3! 3! 3! 2! 2! 2! 3! 3! 2! 1!
1! 2! 3! 4! 4! 3! 2! 2! 2! 2! 3! 3! 2! 2! 1! 2! 3! 3! 2! 1!
1! 2! 3! 3! 3! 3! 3! 3! 3! 3! 3! 2! 2! 1! 1! 2! 3! 3! 2! 1!
1! 2! 2! 2! 2! 2! 2! 2! 2! 2! 2! 2! 1! 1! 1! 2! 2! 2! 2! 1!
1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!

Autonomous 
Robots 

•  Wavefront planner: 

•  Planner based on the brushfire algorithm 

•  The algorithm starts from the goal position (labelled with a 2) 

•  The “1” cells are not considered 

•  The result is the distance to the goal (-2) 

•  Gradient descent indicates the direction to go 

•  Drawbacks 

•  The planner has to search the entire space 

•  Does not scale well in higher dimensions or big spaces!! 
Computationally intractable. In 3D,  

        4-point connectivity ! 6-point connectivity 

   8-point connectivity ! 26-point connectivity  

Potential functions 
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Autonomous 
Robots 

•  Wavefront planner: 

with 4-point connectivity, 1st iteration 

Potential functions 

1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!
1! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 0! 0! 0! 1! 1! 0! 2! 0! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 1!
1! 0! 0! 0! 1! 1! 1! 1! 1! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 1!
1! 0! 0! 0! 1! 1! 1! 1! 1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 0! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 0! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 1! 1! 0! 0! 0! 0! 1!
1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!

Autonomous 
Robots Potential functions 

1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!
1! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 0! 0! 0! 1! 1! 4! 3! 4! 1!
1! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 0! 0! 0! 1! 1! 3! 2! 3! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 1! 4! 3! 4! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 1! 5! 4! 5! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 1! 6! 5! 6! 1!
1! 0! 0! 0! 1! 1! 1! 1! 1! 0! 0! 0! 0! 0! 1! 1! 7! 6! 7! 1!
1! 0! 0! 0! 1! 1! 1! 1! 1! 0! 0! 0! 0! 11! 10! 9! 8! 7! 8! 1!
1! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 0! 0! 11! 10! 9! 8! 9! 1!
1! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 0! 0! 0! 0! 11! 10! 9! 10! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 0! 11! 10! 11! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 1! 0! 0! 11! 0! 1!
1! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 0! 1! 1! 1! 0! 0! 0! 0! 1!
1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!

•  Wavefront planner: 

with 4-point connectivity, 10th iteration 
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1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!
1! 29! 28! 27! 26! 25! 1! 1! 22! 21! 20! 19! 18! 17! 1! 1! 4! 3! 4! 1!
1! 28! 27! 26! 25! 24! 1! 1! 21! 20! 19! 18! 17! 16! 1! 1! 3! 2! 3! 1!
1! 27! 26! 25! 24! 23! 22! 21! 20! 19! 18! 17! 16! 15! 1! 1! 4! 3! 4! 1!
1! 26! 25! 24! 23! 22! 21! 20! 19! 18! 17! 16! 15! 14! 1! 1! 5! 4! 5! 1!
1! 25! 24! 23! 22! 21! 20! 19! 18! 17! 16! 15! 14! 13! 1! 1! 6! 5! 6! 1!
1! 26! 25! 24! 1! 1! 1! 1! 1! 16! 15! 14! 13! 12! 1! 1! 7! 6! 7! 1!
1! 27! 26! 25! 1! 1! 1! 1! 1! 15! 14! 13! 12! 11! 10! 9! 8! 7! 8! 1!
1! 28! 27! 26! 25! 24! 23! 1! 1! 16! 15! 14! 13! 12! 11! 10! 9! 8! 9! 1!
1! 27! 26! 25! 24! 23! 22! 1! 1! 17! 16! 15! 14! 13! 12! 11! 10! 9! 10! 1!
1! 26! 25! 24! 23! 22! 21! 20! 19! 18! 17! 16! 15! 14! 1! 12! 11! 10! 11! 1!
1! 27! 26! 25! 24! 23! 22! 21! 20! 19! 18! 17! 16! 1! 1! 13! 12! 11! 12! 1!
1! 28! 27! 26! 25! 24! 23! 22! 21! 20! 19! 18! 1! 1! 1! 14! 13! 12! 13! 1!
1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!

•  Wavefront planner: 

with 4-point connectivity, 27th iteration 

Autonomous 
Robots Potential functions 

1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!
1! 29! 28! 27! 26! 25! 1! 1! 22! 21! 20! 19! 18! 17! 1! 1! 4! 3! 4! 1!
1! 28! 27! 26! 25! 24! 1! 1! 21! 20! 19! 18! 17! 16! 1! 1! 3! 2! 3! 1!
1! 27! 26! 25! 24! 23! 22! 21! 20! 19! 18! 17! 16! 15! 1! 1! 4! 3! 4! 1!
1! 26! 25! 24! 23! 22! 21! 20! 19! 18! 17! 16! 15! 14! 1! 1! 5! 4! 5! 1!
1! 25! 24! 23! 22! 21! 20! 19! 18! 17! 16! 15! 14! 13! 1! 1! 6! 5! 6! 1!
1! 26! 25! 24! 1! 1! 1! 1! 1! 16! 15! 14! 13! 12! 1! 1! 7! 6! 7! 1!
1! 27! 26! 25! 1! 1! 1! 1! 1! 15! 14! 13! 12! 11! 10! 9! 8! 7! 8! 1!
1! 28! 27! 26! 25! 24! 23! 1! 1! 16! 15! 14! 13! 12! 11! 10! 9! 8! 9! 1!
1! 27! 26! 25! 24! 23! 22! 1! 1! 17! 16! 15! 14! 13! 12! 11! 10! 9! 10! 1!
1! 26! 25! 24! 23! 22! 21! 20! 19! 18! 17! 16! 15! 14! 1! 12! 11! 10! 11! 1!
1! 27! 26! 25! 24! 23! 22! 21! 20! 19! 18! 17! 16! 1! 1! 13! 12! 11! 12! 1!
1! 28! 27! 26! 25! 24! 23! 22! 21! 20! 19! 18! 1! 1! 1! 14! 13! 12! 13! 1!
1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!

•  Wavefront planner: 

with 4-point connectivity, one shortest trajectory 

From starting point, gradient descent indicates direction to goal.  
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Autonomous 
Robots Potential functions 

1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!
1! 21! 20! 19! 18! 18! 1! 1! 14! 14! 14! 14! 14! 14! 1! 1! 3! 3! 3! 1!
1! 21! 20! 19! 18! 17! 1! 1! 14! 13! 13! 13! 13! 13! 1! 1! 3! 2! 3! 1!
1! 21! 20! 19! 18! 17! 16! 15! 14! 13! 12! 12! 12! 12! 1! 1! 3! 3! 3! 1!
1! 21! 20! 19! 18! 17! 16! 15! 14! 13! 12! 11! 11! 11! 1! 1! 4! 4! 4! 1!
1! 21! 20! 19! 18! 17! 16! 15! 14! 13! 12! 11! 10! 10! 1! 1! 5! 5! 5! 1!
1! 21! 20! 19! 1! 1! 1! 1! 1! 13! 12! 11! 10! 9! 1! 1! 6! 6! 6! 1!
1! 21! 20! 19! 1! 1! 1! 1! 1! 13! 12! 11! 10! 9! 8! 7! 7! 7! 7! 1!
1! 21! 20! 19! 18! 17! 17! 1! 1! 13! 12! 11! 10! 9! 8! 8! 8! 8! 8! 1!
1! 21! 20! 19! 18! 17! 16! 1! 1! 13! 12! 11! 10! 9! 9! 9! 9! 9! 9! 1!
1! 21! 20! 19! 18! 17! 16! 15! 14! 13! 12! 11! 10! 10! 1! 10! 10! 10! 10! 1!
1! 21! 20! 19! 18! 17! 16! 15! 14! 13! 12! 11! 11! 1! 1! 11! 11! 11! 11! 1!
1! 21! 20! 19! 18! 17! 16! 15! 14! 13! 12! 12! 1! 1! 1! 12! 12! 12! 12! 1!
1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!

•  Wavefront planner: 

with 8-point connectivity, 20th iteration 

Autonomous 
Robots Potential functions 

1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!
1! 21! 20! 19! 18! 18! 1! 1! 14! 14! 14! 14! 14! 14! 1! 1! 3! 3! 3! 1!
1! 21! 20! 19! 18! 17! 1! 1! 14! 13! 13! 13! 13! 13! 1! 1! 3! 2! 3! 1!
1! 21! 20! 19! 18! 17! 16! 15! 14! 13! 12! 12! 12! 12! 1! 1! 3! 3! 3! 1!
1! 21! 20! 19! 18! 17! 16! 15! 14! 13! 12! 11! 11! 11! 1! 1! 4! 4! 4! 1!
1! 21! 20! 19! 18! 17! 16! 15! 14! 13! 12! 11! 10! 10! 1! 1! 5! 5! 5! 1!
1! 21! 20! 19! 1! 1! 1! 1! 1! 13! 12! 11! 10! 9! 1! 1! 6! 6! 6! 1!
1! 21! 20! 19! 1! 1! 1! 1! 1! 13! 12! 11! 10! 9! 8! 7! 7! 7! 7! 1!
1! 21! 20! 19! 18! 17! 17! 1! 1! 13! 12! 11! 10! 9! 8! 8! 8! 8! 8! 1!
1! 21! 20! 19! 18! 17! 16! 1! 1! 13! 12! 11! 10! 9! 9! 9! 9! 9! 9! 1!
1! 21! 20! 19! 18! 17! 16! 15! 14! 13! 12! 11! 10! 10! 1! 10! 10! 10! 10! 1!
1! 21! 20! 19! 18! 17! 16! 15! 14! 13! 12! 11! 11! 1! 1! 11! 11! 11! 11! 1!
1! 21! 20! 19! 18! 17! 16! 15! 14! 13! 12! 12! 1! 1! 1! 12! 12! 12! 12! 1!
1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1! 1!

•  Wavefront planner: 

with 8-point connectivity, one shortest trajectory 

From starting point, gradient descent indicates direction to goal.  
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!

Autonomous 
Robots 

Planning in topological maps 

•  Topological map: simplified map with 
only relationship between points. It 
can be represented as a graph:  

•  nodes are real positions 

•  edges join positions in the free 
space, they include the distance 

•  It is easy to find a path in a 
topological map. How to build a 
topological map? 

•  Visibility graph 

•  Voronoi diagram 

•  How to solve the graph? 

•  A* algorithm 

  

Topological maps 
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Robots 

Defined for a 2D polygonal configuration space 

•  The nodes vi of the visibility graph include the start location, the goal 
location, and all the vertices of the configuration space obstacles. 

•  The graph edges eij are straight-line segments that connect two line-of-
sight nodes νi and νj, i.e., 

     

Top. Maps: Visibility Graph 

Autonomous 
Robots 

•  Construction of the visibility graph with n nodes has complexity n3 

 for all nodes; for all potential edges; for all obstacle edges 

wich can be reduced with the Rotational Plane Sweep Algorithm (n2 log n). 

•  Using the euclidean distance, the graph can be searched to find the 
shortest distance.  

Top. Maps: Visibility Graph 
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s 
g 

Visibility graph construction with brute force 

Autonomous 
Robots Top. Maps: Visibility Graph 

s 
g 
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Autonomous 
Robots Top. Maps: Visibility Graph 

s 
g 

Autonomous 
Robots Top. Maps: Visibility Graph 

s 
g 

intersects with any of the 9 obstacle edge? 
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s 
g 

Autonomous 
Robots Top. Maps: Visibility Graph 

s 
g 
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Robots Top. Maps: Visibility Graph 

s 
g 

Autonomous 
Robots Top. Maps: Visibility Graph 

s 
g 
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s 
g 

Autonomous 
Robots Top. Maps: Visibility Graph 

Rotational plane sweep algorithm 

Algorithm for building the visibility graph in a total time complexity of n2 
log n: 

•  A rotating half-line emanating from any vertex will be used to 
determine the vertices which are visible. 

•  The half-line has to stop only in the directions in which there is a 
vertex. 

•  At each vertex angle, a list of edges which intersect the beam will be 
updated (list S). 

•  Since the line rotates following the sorted list of vertex angles, list ε, 
the updating of the S list consists only on adding or removing the 
edges that contain the candidate vertex. 

•  Then, to determine if the vertex is visible, only intersection with lines 
contained in the S list, that are closer than the candidate vertex, 
have to be checked. 
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Rotational plane sweep algorithm 

Autonomous 
Robots Top. Maps: Visibility Graph 

Rotational plane sweep algorithm 

Start 

v1 
v2 

v3 
v4 

Goal 

E1 
E2 

E3 Initialization: 
S={E1,E2} 

vs 

ε={α1, α2, α3, α4} 
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Rotational plane sweep algorithm 

Start 

v1 
v2 

v3 
v4 

Goal 

E1 
E2 

E3 Iteration 1, stop at α1 : 
S={E1,E3} 
 
VsV1  intersects with E1! 
 
 

vs 

ε={α1, α2, α3, α4} 

Autonomous 
Robots Top. Maps: Visibility Graph 

Rotational plane sweep algorithm 

Start 

v1 
v2 

v3 
v4 

Goal 

E1 
E2 

E3 Iteration 2, stop at α2 : 
S={} 
 
VsV2  is visible! 
 
 

vs 

ε={α1, α2, α3, α4} 
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Rotational plane sweep algorithm 

Start 

v1 
v2 

v3 
v4 

Goal 

E1 
E2 

E3 Iteration 3, stop at α3 : 
S={E1, E2} 
 
VsV3  does not intersect with 
E1, it is visible! 
 
 

vs 

ε={α1, α2, α3, α4} 

Autonomous 
Robots Top. Maps: Visibility Graph 

Rotational plane sweep algorithm 

Start 

v1 
v2 

v3 
v4 

Goal 

E1 
E2 

E3 Iteration 4, stop at α4 : 
S={E1, E2} 
 
VsV4  intersects with E1 and 
E2! 
 
 

vs 

ε={α1, α2, α3, α4} 
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Rotational plane sweep algorithm + A* 

!

Autonomous 
Robots 

.  

.  

a b 

c d 

e f 

s 

g 

8.8 

3.5 

4.7 
4 

3.9 

8.4 

4.1 
5.7 

4.5 
4.8 

8.7 8.1 

13.5 

15 8.7 

9.8 

9.3 4.8 

Graph search - A* algorithm 
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.  

.  

a b 

c d 

e f 

s 

g 

8.8 

3.5 

4.7 

4 

3.9 

8.4 

4.1 

5.7 

4.5 

4.8 

8.7 8.1 

13.5 

15 8.7 

9.8 

9.3 4.8 

Nodes Cost 
a 17 
c 18.1 
f 19.7 

Nodes Backpointer 
s - 

O list C list 
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Robots 

.  

.  

a b 

c d 

e f 

s 

g 

8.8 

3.5 

4.7 

4 

3.9 

8.4 

4.1 

5.7 

4.5 

4.8 

8.7 8.1 

13.5 

15 8.7 

9.8 

9.3 4.8 

Nodes Cost 
b 17.2 
c 18.1 
f 19.7 

Nodes Backpointer 
s - 
a s 

O list C list 
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.  

.  

a b 

c d 

e f 

s 

g 

8.8 

3.5 

4.7 

4 

3.9 

8.4 

4.1 

5.7 

4.5 

4.8 

8.7 8.1 

13.5 

15 8.7 

9.8 

9.3 4.8 

Nodes Cost 
c 18.1 
f 19.7 

Nodes Backpointer 
s - 
a s 
b a 

O list C list 
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.  

.  

a b 

c d 

e f 
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8.8 

3.5 

4.7 

4 

3.9 

8.4 

4.1 

5.7 

4.5 

4.8 

8.7 8.1 

13.5 

15 8.7 

9.8 

9.3 4.8 

Nodes Cost 
d 18.1 
f 19.7 

Nodes Backpointer 
s - 
a s 
b a 
c s 

O list C list 
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.  

.  

a b 

c d 

e f 

s 

g 

8.8 

3.5 

4.7 

4 

3.9 

8.4 

4.1 

5.7 

4.5 

4.8 

8.7 8.1 

13.5 

15 8.7 

9.8 

9.3 4.8 

Nodes Cost 
g 18.1 
f 19.7 
e 30.1 

Nodes Backpointer 
s - 
a s 
b a 
c s 
d c 

O list C list 
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Robots 

.  

.  

a b 

c d 

e f 

s 

g 

8.8 

3.5 

4.7 

4 

3.9 

8.4 

4.1 

5.7 

4.5 

4.8 

8.7 8.1 

13.5 

15 8.7 

9.8 

9.3 4.8 

Nodes Cost 
f 19.7 
e 30.1 

Nodes Backpointer 
s - 
a s 
b a 
c s 
d c 
g d 

O list C list 
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Robots Research project: AUV topological path planning 

!!2D!Path!planning!from!bathymetric!maps!for!goal!
achievement!using!topological!informa8on!based!on!
homotopies.!

Bathymetric map 2D map Path in the workspace for each 
homotopic class 

Autonomous 
Robots Research project: AUV topological path planning 

Homotopy Definition 
•  Let p1, p2: [0, 1] → R2 be two continuous paths. Then p1 and 

p2 are homotopic with respect to a set of obstacles V � R2 if 
p1 can be continuously deformed into p2 while avoiding the 
obstacles.  

•  Example 

s

g1p
2p

s

g
1p

2p

p1 and p2 are homotopic p1 and p2 are not homotopic 



45 
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From the workspace to the topological 
graph  From!the!workspace!to!the!topological!graph!!

Conversion of the metric workspace into a topological one using an extension of the 
Jenkins method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The reference frame is the link between the metric workspace and the topological 
graph. 
Any path can be described by the ordered sequence of the traversed segments in 
the reference frame. 
The topological graph is used to generate systematically, all the topological paths  
(homotopy classes) discarding the duplicates and those which are ensured to self-
cross. 

1 

3 

4 2 

1β

1α

2β

2α

1α 2α

s

g

1β

1α

2β

2α

p c

1b 2b

s

g

2l 1l

p

s

g

Workspace  Reference frame  Topological graph  

Autonomous 
Robots Research project: AUV topological path planning 

Topologically guided path planning 
•  Extension of the Jenkins 

method for allowing any 
class to be followed. 

•  A lower bound of the 
optimal path can be 
calculated for each 
homotopy class.  

•  The classes with smaller 
lower bound can be 
explored with a modified 
version of the RRT 
algorithm (HRRT) or the A* 
algorithm (HA*) to find the 
global optimal path. 

HRRT: fast suboptimal path 
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Topologically guided path planning 

A*: slow but optimal path 

•  Extension of the Jenkins 
method for allowing any 
class to be followed. 

•  A lower bound of the 
optimal path can be 
calculated for each 
homotopy class.  

•  The classes with smaller 
lower bound can be 
explored with a modified 
version of the RRT 
algorithm (HRRT) or the 
A* algorithm (HA*) to find 
the global optimal path. 

Autonomous 
Robots Research project: AUV topological path planning 

Experimental results 

Set up in the water tank of the UdG 

•  Test of the proposal in real conditions with SPARUSAUV in a controlled 
unknown environment to test its applicability to real applications. 
 
 

SPARUSAUV 

•  MSIS configuration: 360º sector, 5m range with a 0.1m resolution and a 1.8 
angular step. 

•  Dead-reckoning computed using the velocity readings coming from the DVL 
and the heading data obtained from the MRU sensor, both merged with an 
EKF. 
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Autonomous 
Robots Research project: AUV topological path planning 

Preliminary experimental results 
"  Resultant!OGM!map!with!its!reference!frame!and!topological!graph!

!

"  Homotopy classes and their paths in the workspace 

11 12 ββ
00 21 αα

01 12 αβ
10 12 βα

Autonomous 
Robots Research project: AUV topological path planning 
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•  Division of the free space in a set of 
cells. 

•  Adjacent cells share a boundary, and 
based on this, an adjacency graph 
can be built.  

•  Path planning is done by first 
determining the cells that contain the 
start and goal positions, and then 
finding a path within the adjacency 
graph. The A* or other graph search 
algorithms can be used. 

•  The adjacency graph can also be 
considered as a topological map. 

•  Cell decomposition is often used for 
coverage path planning. 

Cell decomposition 

Autonomous 
Robots 

Trapezoidal Decomposition 

•  Cells that are shaped like trapezoids: 4 
sides, and also triangles (1 side has 0-
length). 

•  Only for polygonal obstacles, which 
will have a set of vertices. 

•  At each vertex vi, an upper and/or  
lower vertical edges appear, which will 
generate the boundaries between 
adjacent cells. 

•  At each vertex vi, the adjacency graph 
is also updated accordingly.  

Cell decomposition 
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Trapezoidal Decomposition 

•  Each cell has its corresponding graph 
node. 

•  Cells which contain the start and goal 
positions must be found. 

•  Planning will take place at the 
adjacency graph. 

•  Midpoints will be used to translate the 
plan found in the graph into the free 
space. 

Cell decomposition 

Autonomous 
Robots Cell decomposition 

Trapezoidal Decomposition 

•  Each cell has its corresponding graph 
node. 

•  Cells which contain the start and goal 
positions must be found. 

•  Planning will take place at the 
adjacency graph. 

•  Midpoints will be used to translate the 
plan found in the graph into the free 
space. 
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Trapezoidal Decomposition 

•  In order to build cells, a vertical sweep line from left to right is used. 

•  All vertices are sorted from left to right. 

•  The sweep line stops at each vertex vi and a list L, containing intersected 
edges, is updated. 

•  By calculating the y coordinate of the intersection between the sweep line 
and each vertex contained in L, we can easily know the upper (eUPPER) and 
lower (eLOWER) edges of the current vertex.  

•  The update of L is done considering the 2 edges that belong to vi. If an 
edge belongs to the list, it is removed; and if it is not in the list, it is added. 

•  If both are not in L, the second vertex of each edge is used to sort them. 

•  The edge on the left of the vertex edges in L will be eLOWER, and the edge 
on the rigth will be eUPPER. 

Cell decomposition 

Autonomous 
Robots 

e13 
 
e3 
e0 
 
e8 

Cell decomposition 

L:{e8,e13} 
eUPPER: - 
eLOWER: - 
  

L:{e8,e0,e3,e13} 
eUPPER: e13 
eLOWER: e8 
  

e8 
 
e13 
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L:{e8,e0,e3,e12} 
eUPPER: - 
eLOWER: e3 
  

L:{e8,e0,e2,e12} 
eUPPER: e12 
eLOWER: e0 
  

e0 
 
e8 

e12 
 
e3 

e0 
 
e8 

e12 
 
e2 

Autonomous 
Robots Cell decomposition 

L:{e9,e0,e2,e6,e5,e12} 
eUPPER: e12 
eLOWER: e2 
  

L:{e9,e0,e2,e12} 
eUPPER: e0 
eLOWER: - 
  

e12 
 
e2 

e0 
 
e9 

e12 
 
e5 

e0 
 
e9 

e6 
 
e2 
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L:{e9,e6,e5,e12} 
eUPPER: e6 
eLOWER: e9 
  

L:{e9,e1,e2,e6,e5,e12} 
eUPPER: e2 
eLOWER: e9 
  

e12 
 
e5 

e1 
 
e9 

e6 
 
e2 

e12 
 
e5 

e6 
 
e9 

Autonomous 
Robots Cell decomposition 

L:{e9,e4,e7,e6,e5,e12} 
eUPPER: e6 
eLOWER: e9 
  

e12 
 
e5 

e4 
 
e9 

e6 
 
e7 

L:{e9,e4,e5,e12} 
eUPPER: e5 
eLOWER: e4 
  

e4 
 
e9 

e12 
 
e5 
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L:{e10,e4,e5,e12} 
eUPPER: e4 
eLOWER: - 
  

e4 
 
e10 

e12 
 
e5 

L:{e10,e4,e5,e11} 
eUPPER: - 
eLOWER: e5 
  

e4 
 
e10 

e11 
 
e5 

Autonomous 
Robots Cell decomposition 

L:{} 
eUPPER: - 
eLOWER: - 
  

L:{e10,e11} 
eUPPER: e11 
eLOWER: e10 
  

e11 
 
e10 
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Boustrophedon decomposition 

•  Similar than trapezoidal decom-
position but only vertices at which 
vertical line can be extended up and 
down are considered. 

•  Cells are bigger, not trapezoidal. 

•  Used for coverage path planning (i.e. 
cleaning robots). 

•  A lawnmower trajectory is followed 
inside each cell.  

Cell decomposition 

Trapezoidal decomposition 

Boustrophedon decomposition 

Autonomous 
Robots 

Boustrophedon decomposition 

•  Once the graph is generated, an 
exhaustive walk is first determined 
(depth-first search algorithm). 

•  Then, explicit robot motions are 
determined within each cell: straight 
lines separated by one robot width 
and short segments connecting 
them. 

Cell decomposition 
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Robots Research project: AUV coverage path planning 

!!Coverage!path!planning!from%
bathymetric%maps%for%surveying%
trajectories.!Cell!decomposiGon.!
%
!

Coverage path in a cell!

Autonomous 
Robots Research project: AUV coverage path planning 
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Autonomous 
Robots Research project: AUV coverage path planning 
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Robots Research project: AUV coverage path planning 

Autonomous 
Robots Research project: AUV coverage path planning 
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Robots Research project: AUV coverage path planning 

Autonomous 
Robots Research project: AUV coverage path planning 
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??? 

Mapping unknown structures without having prior information 

Autonomous 
Robots 

•  World is represented using a labeled 2D grid map: 

Research project: Online view planning 
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Autonomous 
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•  Voxel labeling strategy: 

Research project: Online view planning 

Autonomous 
Robots 

Range viewpoint 

Camera viewpoint 

Previous 
path 

•  Two types of viewpoints are generated: 

Research project: Online view planning 
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•  Surface normal computation: 

 
•  Viewpoint selection based on distance and orientation 

•  Automatic sonar beam orientation 

174 

Research project: Online view planning 

Autonomous 
Robots 

•  To plan safe paths that allow the vehicle to 
achieve desired views, the Open Motion 
Planning Library (OMPL) has been used:  

175 

Path 
planner 

State 
validity 
checker 

Cost 
function 

Sampler 

•  Final solution uses RRT* 
sampling based planner 
in R2 space 

Research project: Online view planning 
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•  The cost of a path corresponds to the integral of the risk function 
along the path: 

176 

Risk map representation. Comparison between real map (left) and its 
corresponding risk map representation (right) 

Research project: Online view planning 

Autonomous 
Robots 

•  Path smoothing is applied: 

177 

Top view of the robot. World and robot 
coordinate frames 

Example of path smoothing. Original path 
(black) and smoothed path (blue) 

Research project: Online view planning 
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178 

START!

END!

•  Line Of Sight (LOS) algorithm: 

Line Of Sight algorithm: the vehicle orients and 
moves towards an intermediate goal 

Projection 

Intermediate 
goal 

Research project: Online view planning 

Autonomous 
Robots Research project: Online view planning 
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Autonomous 
Robots Research project: Online view planning 
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•  For problems with a lot of Degrees of 
Freedom or constraints (kinematic and 
dynamic). 

•  Instead of finding an optimal solution 
considering the whole environment, 
only few samples are considered. 

•  Each sample is a robot configuration.  

•  Solution to path planning will be a 
sequence of connected samples which 
all bellong to Qfree and connect the 
start and goal positions. 

•  A procedure is used to determine if a 
configuration is in Qfree or not. 

•  Algorithms can also guarantee the 
finding of the solution (completeness), 
they are probabilistic completeness. 

 

Sampling-based algorithms 

Autonomous 
Robots 

Probabilistic RoadMap planner 
•  It is a multiple-query planner that creates a roadmap 

in Qfree. 
•  Coarse sampling using a uniform random distribution 

is used to obtain the nodes of the roadmap.  

•  The edges between nodes are planned, by a local 
planner, with fine sampling to ensure that all 
configurations belong to Qfree. 

•   Phases: 
•  Learning phase, to create the roadmap. 
•  Query phase, to plan particular paths between a 

start and a goal configurations. 

•  Roadmap is represented by a graph G=(V,E); V: 
vertices or nodes; E: edges generated by the local 
planner that correspond to a collision-free path from 
q1 to q2. Simplest form of the local planner: the 
straight line. 

•  In the query phase, qinit and qgoal are connected to 
two nodes q’ and q’’ respectively. The planner 
searches G for connecting q’ and q’’, and generates 
the path. 

 

Sampling-based algorithms 
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•  Being Δ the local planner and dist a metric function to measure distance between two 
configurations  

Sampling-based algorithms 

Ø 
Ø 

Autonomous 
Robots 

Probabilistic RoadMap planner 

•  Roadmap in a 2D space, local planner: straight line planner, n=50, k=3. 

Sampling-based algorithms 
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Autonomous 
Robots 

Probabilistic RoadMap planner 

•  Query solved with a graph-search algorithm (i.e. A*)  

Sampling-based algorithms 
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Single-Query Sampling-Based Planners 
•  Different approaches to build directly, without the roadmap, the path 

between two configurations. 
•  For large number of degrees of freedom, or kinematic and dynamic 

constraints. 

•  RRT algorithm (Rapidly-Exploring Random Trees) 
•  Most well known sampling algorithm 
•  2 trees, Tinit and Tgoal, grow  
rooted at qinit and qgoal respectively. 
•  A random configuration qrand is  
sampled uniformly in Qfree. 
•  The nearest configuration qnear is 
found, and a new configuration qnew 

is generated at a step_size distance  
towards qrand.  
•  qnew and the edge (qnear, qnew) must 
belong to Qfree. 
 

 

 

 
 

Autonomous 
Robots Sampling-based algorithms 

Single-Query Sampling-Based Planners 
•  RRT algorithm (Rapidly-Exploring Random Trees) 
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Single-Query Sampling-Based Planners 
•  RRT algorithm (Rapidly-Exploring Random Trees) 

 

 

 
 

Autonomous 
Robots Sampling-based algorithms 

Single-Query Sampling-Based Planners 
•  RRT algorithm (Rapidly-Exploring Random Trees) 

 

 

 
 



71 

Autonomous 
Robots Sampling-based algorithms 

Ø 

Autonomous 
Robots Sampling-based algorithms 

RRT algorithm  
•  The sampling is usually guided towards qgoal (or qinit) to improve the 

efficiency: 
•  with p probability: qrand = qgoal 
•  with (1-p) probability: qrand = random uniform distribution 

•  Merging of trees, Tinit and Tgoal,  
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Sampling-based algorithms implementation details 
•  Straight-line local planner implementation: 

•  Discretization of the line according to a small step size. 
•  Collision checking strategies: incremental (left) and subdivision (right) 

algorithms. 

•  Postprocessing queries to improve 
shortness and smoothness. 

•  Greedy approach: connect 
qgoal from qinit, if it fails try from 
a closer position until it connects. 
Once qgoal connected start again 
with its directly connected position. 

 

 
 

Autonomous 
Robots Sampling-based algorithms 

RRT algorithm, examples  
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•  Solving start-to-goal queries to move through a breakwater 

Bathymetry 

2.5D elevation map using a multibeam 
profiler sonar (Sant Feliu de Guixols).  

Breakwater 

A series of concrete blocks (14.5mx12m), 
separated by four-meter gap.  Average depth 
of 7m.  

Research project: AUV motion planning 

Autonomous 
Robots 

•  Offline planning 

UnderWater Simulator (UWSim) [Prats-
IROS12] 

RRT [LaValle96] RRT* [Karaman10] 

Research project: AUV motion planning 
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•  Motion constraints? Non-holonomic vehicle. 

Research project: AUV motion planning 

Autonomous 
Robots 

•  Motion constraints: kinodynamic motion planning 

Research project: AUV motion planning 
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without 
constraints 
 

 with 
constraints 
 

Research project: AUV motion planning 

Autonomous 
Robots Research project: AUV motion planning 
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Online path planning? 

Autonomous 
Robots Research project: AUV motion planning 
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Collision!risk!+!path!length!
•  Risk!zones!
•  Integral! of! risk! with! respect!

to!distance!

Mo2on!or!differen2al!constraints.!
•  Dubins!curves!(alterna8ve)!

q = [x, y,ψ]→ q ∈ SE(2)→ q ∈ℜ2 × S
!q = f (q,u)

!x
!y
!ψ

%

&

'
'
'

(

)

*
*
*
=

v.cos(ψ)
v.sin(ψ)

r

%

&

'
'
'

(

)

*
*
*

Research project: AUV motion planning 

Autonomous 
Robots 

#  Mo8on!Constraints.!
#  Op8miza8on!func8on:!length!and!risk!associated!to!a!path!
#  Opportunis8c!collision!and!risk!checking.!
#  Reuse!of!last!best!known!solu8on.!

[Hernández-IROS16] 

Research project: AUV motion planning 
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[Hernández, Istenič - Sensors16] 

Research project: AUV motion planning 

Autonomous 
Robots Research project: towards 3D motion planning 
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MEMORIA CIENTÍFICO-TÉCNICA  
 

Convocatoria de ayudas a PROYECTOS 

EXPLORA « CIENCIA »  y EXPLORA « TECNOLOGÍA » 

2013 
 

ANEXO II 
Únicamente en caso de que se considere necesario para aclarar ciertos aspectos del proyecto, incorpore las imágenes 
o figuras (formato TIFF, JPEG o GIF) a las que se haya hecho referencia en el texto. 
Máximo 2 páginas 
Respete la extensión máxima indicada. Recuerde que en virtud del artículo 11 de la convocatoria NO SE ACEPTARÁN 
NI SERÁN SUBSANABLES MEMORIAS CIENTÍFICO-TÉCNICAS que no se presenten en este formato. 

 
Fig.1 Submerged environment with strong 3D relieve (From left to Right): Cave, under ice, shipwreck and oil well. 

 
Fig.2 Submerged Cave explored by Our team with a diver using a sensor rig (from left to rigth): Aerial photo; Cave 
sketch; Horizontal view of the explored cave; 3D view of the explored cave. 

 
Fig. 3. 3D Map of a convex submerged structure  (from left to right): Bathymetry; Path obtained through coverage path 
planning; Trajectory followed by the AUV and point cloud extrated from the MBES; Reconstructed 3D surface. 
 

 
 

  

Research project: towards 3D motion planning 

Autonomous 
Robots 

Im
age!credit:!Andreu!Llam

as!&
!Pepi!Caceres!

Research project: towards 3D motion planning 



80 

Autonomous 
Robots 

HIL Simulation: Autonomous Guidance In a Cave  

•  No A Priori Map Used 
•  Navigation towards a Goal Waypoint out 

of the cave 
•  Rotating Forward Looking Multibeam 

•  Real Time Path Planning under 
Kinematic Constrains 

•  Real Time Octomap Mapping 
•  Autonomous Guidance 
 
 

Research project: towards 3D motion planning 

Autonomous 
Robots Research project: AUV motion planning 

•  Consist!of!different!samplingJbased!mo8on!planning!algorithms.!
•  Not!collision!checking!or!visualiza8on!tools!included.!

Taken from OMPL website:
http://ompl.kavrakilab.org/ 

•  Not! designed! for! any! specific!
scenario,! collision! checking! done!
with!userJdefined!rou8nes.!

•  Support! for! kinodynamic! mo8on!
planning.!

•  Support! for! commonly! used! state!
spaces!(SE(2),!SE(3),!Rn,!etc.).!

•  Extensible! to! userJdefined! state!
spaces.!

Open!Mo2on!Planning!Library!(OMPL)!
Copyright!©!2010–2016,!Rice!University.!All!rights!reserved.!
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