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Schedule for today 

PART 1 
•  Introduction to underwater Vision 
•  Pre-processing 
 

PART 2 
•  Feature detection and description 
•  Feature matching 
 

PART 3  
•  Motion estimation and outlier rejection 
 

PART 4 
•  Topology Estimation and Global Alignment 
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PART 1 
•  Introduction to underwater Vision 
•  Pre-processing 
 



Computer Vision and Robotics Group - Underwater Vision Lab 

Using vision underwater, uhm… 

v Light and water are not good friends: 
§  Absorption 
§  Scattering 
§  Blurring 
§  Non-uniform lighting 

 
 
 

v We need to get close to the seafloor to collect 
data → data gathering is expensive 

Light Source Required 

Non-uniform Illumination 

Light Attenuation Scattering 
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Underwater imaging 

•  Poor visibility   
•  Distance dependent 

*Kahanov and Royal 
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Underwater imaging 

Camera 

Absorption 

Scattering Object 
Radiance 

Veiling Light 

Signal 

Water Surface 

natural illumination 

•  Poor visibility   
•  Dist. dependent 

Veiling light  =  Spacelight  =  Path radiance =  Backscatter 
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Underwater imaging 

Camera 

Absorption 

Scattering Object 
Radiance 

Veiling Light 

Signal 

Water Surface 

J(x) · t(x) I(x) = + A(x) · (1 – t(x))  
 Scene radiance · transmission; 𝑡∈[0,1] 

Airlight constant 
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Underwater imaging 

v Scattering  
Lakeland Shipwreck – Lake 

Michigan, ~67m depth 

(http://www.nordicdiver.com) 

Light Source 
Required 

Non-uniform 
Illumination 

Light 
Attenuation 

Scattering 
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Underwater imaging 
Bathyluck cruise (2009). PI: Javier Escartin 
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Photometric Artifacts: summary 

5  

Underwater Imaging Environment 

Sun Flicker (caustics)  
Cast Shadows 
Suspended Particles 
Turbulence 

Artificial Lighting 

Back-Scatter 

Visual Cues from floating Life 
Forms (marine larval ecology, e.g., 

plankton) 

Artificial Lighting  

Shading  

Cast Shadows 

High Turbidity 

Visual Cues from 
Natural Features and 
Manmade Structures 

Loss of Color 

Strong Visual Cues 
from Benthic 

Features 



Computer Vision and Robotics Group - Underwater Vision Lab 

Removing sunlight flicker  

Refracted sunlight creates irradiance (light) fluctuations 

Refracted Sunlight 
•  Can disrupt image processing algorithms (matching and segmentation) 
•  Makes it harder to interpret benthic structures  



Computer Vision and Robotics Group - Underwater Vision Lab 

Our Approach – 2 key observations 

v Observation 1 

§  The difference between an image and the temporal median 
has two components 

Component 1 – Instant illumination field from sun light 

Component 2 – Artifacts from registration errors 

Original image  Temporal Median 

- = 

Difference 
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Our Approach – 2 key observations 

v Observation 2 

§  The two components are (usually) easily separable in the 
frequency domain 

 

Difference 

Low Pass 

Filter 

High Pass 

Filter 

Illumination field has 
lower spatial frequencies 

Registration artifacts have 
higher spatial frequencies 

 



Computer Vision and Robotics Group - Underwater Vision Lab 

Removing sunlight flicker  

Input 

Difference 
(Input - Median) 

Output  

Temporal Median  Illumination field 
(low pass difference) 

Residue  
(Output - Median) 
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§  Generates dynamic 
patterns 

sunlight flicker revisited  

§  Created by refracted sunlight 
§  Degrades image quality and the information content 
§  Inversely proportional to depth  
 

Wu Y. N. Doretto G., Chiuso and S. 
Soatto. Dynamic textures. Journal of 
Computer Vis ion, 2003, Kluwer 
Academic Publishers, pages 51(2):
91-109, 2003. 
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Warp previous 
illumination field 

to the current 
frame 

Predict the current 
illumination field 

Coarsely recover 
the image 

Finding 
homography 
between the 
previously 

recovered image 
and current 

coarsely recovered 
image 

Remove 
sunflicker pattern 
from the images 

 
Assumptions: 
1.  Illumination field is a dynamic texture 
2.  Smooth camera movement 
3.  Flat (approximately) bottom of the sea 

Pipeline 
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Dynamic texture modeling 

1 3 2 

4 5 6 

1.  Input image 

2.  Coarsely 
recovered image 

3.  Finally recovered 
image 

4.  Original 
illumination field 

5.  Predicted 
illumination field 

6.  Median image 

A. Shihavuddin, N. Gracias, R. Garcia. "Online Sunflicker Removal using Dynamic Texture Prediction". 
International Conference on Computer Vision Theory and Applications, pp. 161-167, Rome (Italy).  
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Light effects in Underwater Imaging 
 

v Poor visibility: light interactions with water molecules 
and impurities dissolved and suspended in water 
§  Absorption effects 
§  Scattering effects 

•  Forward scattering 
•  Backward scattering 

§  Fluorescences of biological objects 
§  Swimming macroscopical particles 
§  Lighting inhomogeneities 

•  Shallow water: sun flickering 
•  Deep water: artificial lighting, vignetting,  

 limited lightpower 
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The absorption of light power is exponential - Lambert Law of 

Absorption. Attenuation Factor dependence on distance:  
F = exp( ─ a(λ) * d), where a(λ) is the spectral absorbance.  

Light effects in Underwater Imaging 
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Light effects in Underwater Imaging  
 
Basically, the water only is only transparent  for the bluish visible range, 

but this range has often strong scattering effects, thereby it is loss in 
sharpness and contrast 
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A non-dehazing approach for visualization in 
tight blue spectral range 
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Narrow Spectral Imaging 

L. Neumann, R. Garcia, J. Basa, R. Hegedus. "Acquisition and Visualization Techniques for Narrow Spectral  Color Imaging", Journal of the 
Optical Society of America A. Vol. 30, no. 6, pp. 1039–1052, 2013.  
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Narrow Spectral Imaging 
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Light effects in Underwater Imaging 

Rayleigh scattering results in hazy 
images and Mie scattering in 
blurry, murky, faded appearance 

Density fluctuation of water molecules vs. 
any kind of physical inhomogeneity that is 
larger than water molecule  (R vs. M) 

v Rayleigh angular scattering in 
pure water 

v Appr. Wavelength´s power = 4 
44! 
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Light effects in Underwater Imaging 

 There are also natural (self illuminating) and excited  
 fluorescence effects, characterizing some biological activities 

v  Fluorescence is not  
disturbing, low-light 

v  Nice and useful future 
work, but we do not deal 
with this phenomena in the 
image enhancement 
algorithms 
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Polarization 

v  A given part of the scattered light is linearly polarized. Polarization information 
can therefore be used to reduce the effect of scattered light. 

v  A polarization camera can acquire the full polarization information per pixel 

Fluxdata  Polarization camera: 3 CCD sensors with differently oriented linear polarizers 
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A non-underwater example with  
over-depolarization 

v  Primary objective: acquiring the full polarization information pro pixel 
pro color (Intensity, Lin.polar1, Lin.polar2) 
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A non-underwater example with  
over-depolarization 

v  Primary objective: acquiring the full polarization information pro pixel 
pro color (Intensity, Lin.polar1, Lin.polar2) 
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Underwater 
dehazing 
examples 
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Underwater dehazing 
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 Underwater dehazing 
Some RED deficite, yet – in 2010 test 
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Underwater dehazing   

Enhanced image Original image 
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Underwater dehazing   

Enhanced image Original image 
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Image Dehazing – Depth map approach 
 
 v Dark-channel based approach 

§  Based on the observation that most local patches in 
haze-free outdoor images contain some parts which 
have very low intensities in some dark pixels in at least 
one color channel, so that these will contain only 
scattered component in a hazy image 

 



Computer Vision and Robotics Group - Underwater Vision Lab 

Dark Channel based Image Dehazing 

v Basic idea 
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Dark Channel based Image Dehazing 

=	 x	x	 +	
t(x)	  

transmission	
J(x)	  

Scene	  	  radiance	
1-‐t(x)	
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Most local patches in haze-free outdoor images 

contain some pixels which have very low intensities in 

at least one color channel, so that for these pixels: 

I dark (x) = min
c∈{R,G ,B}

min
y∈ω (x )

I (c) (y)( )
Dark channel can be defined as: 

From here we can get transmission map t, given that we know A 

zt e β−=where 
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Sparse ‘dark channel’-based depth map 

Contribution from different channels 
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Inpainted depth map (joint bilateral filter) 
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Single image dehazing 
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Single image dehazing 
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Single image dehazing 

Original image 
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Single image dehazing 

Corrected image 
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Single image dehazing 

Original image 
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Single image dehazing – possible artifacts (color, halo, etc.) 

All dark channel methods have problem (artifacts, speed) 

Artifacts, based on widely used dark channel method, 

and starting from noisy, high ISO image 
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Technique not using depth-maps 

v  A conceptually simple method 

§  Assumes a grey-world and uniform illumination 
§  Uses the Ruderman color space Lαβ to move the 

chromatic component around the white point  
§  Performs luminance stretching.  
§  Fast enough for realtime operation 

G. Bianco, M. Muzzupappa, F. Bruno, R. Garcia, L. Neumann. "A new color correction method for underwater imaging". ISPRS/CIPA 
Workshop on Underwater 3D Recording and Modelling, Piano di Sorrento (Napoli), Italy. 16-17 April 2015. 



Computer Vision and Robotics Group - Underwater Vision Lab 

      Some of our running research images 
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JPEG compression causes artifacts on the luminance gradient.  
It is better to use uncompressed images. 



Computer Vision and Robotics Group - Underwater Vision Lab 



Computer Vision and Robotics Group - Underwater Vision Lab 



Computer Vision and Robotics Group - Underwater Vision Lab 

Camera Modeling And Calibration 



Camera Calibration 

Image courtesy of C. Taylor 

“The Scholar of Athens,” Raphael, 1518 

Calibration Introduction – Perspective Imaging 
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Camera Model 

Camera  
coordinate  
system 

World 
coordinate 
system 
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coordinate 
system 
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Camera Model (Step 1: World to Camera) 

Camera  
coordinate  
system 

World 
coordinate 
system 

CY

CX CZ

CO WZ

WY WX

WO

wP

Image plane 

{ }W

{ }C

C
WK

Step 1 
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Camera Model (Step 2: Projection) 

Camera  
coordinate  
system 

World 
coordinate 
system 

CY

CX CZ

CO

WZ

WY WX

WO

wP

Image plane 

{ }W

{ }C

uPf
Step 2 
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Camera Model (Step 3: Lens Distortion) 

Camera  
coordinate  
system 

World 
coordinate 
system 

f
CY

CX CZ

CO

WZ

WY WX

WO

wP

Image plane 

{ }W

{ }C

uP

RY

RX

{ }R

RO

Step 3 

dP
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Camera Model (Step 3: Lens Distortion) 

dP
uP dr

CY

CX

Observed position 

Ideal 
projection 

dr: radial distortion 

a 

b 

Radial distortion effect (a: negative, b: positive) 

Radial Distortion 
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Camera Model (Step 3: Lens Distortion) 

Axis with  
maximum  
radial 
distortion 

Axis with 
minimum 
tangential 
distortion 

CY

CX

Ideal 
projection 

Observed 
 position 

dr: radial distortion 
dt: tangential distortion 

dPuP

dr
CY

CX

dt

Radial and Tangential Distortion 

Image with distortion Image without distortion 
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Camera Model (Step 4: Camera to Image) 

Camera  
coordinate  
system 

World 
coordinate 
system 

( )0 0,u v

f
CY

CX CZ

CO

WZ

WY WX

WO

wP

Image plane 

{ }W

{ }C

uP

IY
IXIO{ }I

RY

RX

{ }R

RO

Image 
coordinate 
system 

Step 4 

dP
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Calibration Methods 

•  Method of Hall 
–  Linear method 
–  Transformation matrix 

•  Method of Faugeras-Toscani 
–  Linear method 
–  Obtaining camera parameters 

•  Method of Faugeras-Toscani with distortion 
–  Iterative method 
–  Radial distortion 



Camera Calibration 
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Assume light is captured on the image plane by a linear projection 

The matrix is defined up to a scale factor  à Multiple Solutions 
A component is fixed to the unity à Unique Solution 

11 12 13 14

21 22 23 24

31 32 33 1
1

W
I w

u W
I w
u W

w

X
s X A A A A

Y
s Y A A A A

Z
s A A A

⎛ ⎞
⎛ ⎞ ⎛ ⎞⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎜ ⎟

⎝ ⎠

2.3.1.  The Method of Hall 
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Pseudoinverse leads to a unique solution: 

1A Q B−=

Obtaining 11 unknowns and every 2D points gives two equations 
So, at least 6 points are needed. More points leads to a more accurate solution. 
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•  Extrinsic parameters: Model the situation and orientation of the camera with 
respect to a world co-ordinate system. 
•  Intrinsic parameters: Model the behaviour of the internal geometry and the 
optical characteristics of the camera. 

2.3.2.  The Method of Faugeras-Toscani 
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2.3.2.  The Extrinsic Parameters 
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2.3.2.  The Intrinsic Parameters: Ideal Projection 
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2.3.2.  The Intrinsic Parameters: Pixel Conversion 
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2.3.2.  The Intrinsic Parameters: Principal Point 
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2.3.2.  The Pinhole Model 
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 Real projection on the image plane   (Xi, Yi) 

( X w ,  Y w ,  Z w ) 3D object point with respect to world co-ordinate system 

Affine transformation. 
Modelled parameters:     R, T 

( X c ,  Y c ,  Z c ) 3D object point with respect to camera co-ordinate system 

Perspective transformation. 
Modelled parameter:     f 

( X u ,  Y u ) Ideal projection on the retinal plane 

Pixel adjustment 
Modelled parameters:    ku, kv  

( X p ,  Y p ) Real projection on the image plane 

Adaptation to the computer image buffer 
Modelled parameters:     u0, v0 

2.3.2.  The Pinhole Model 
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2.3.2.  The Pinhole Model 
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2.3.2.  The Pinhole Model 
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Ideal 
projection 
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position 

dr dt 

Xr 
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dr: radial distortion 
dt: tangential distortion 

Pu 
Pd 

Calibrating the Pinhole Model: The Extrinsics 
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a 

b 

Radial distorsion effect Tangential distorsion effect 

Xr 

Axe of a  
maximum 
tangential 
distortion 

Axe of a 
minimum 
tangential 
distortion 

Radial distorsion is the most important and usually the only considered in 
calibration. 

The Method of Faugeras-Toscani with distorsion 



Camera Calibration 

u

w

v

Yc

Xc

Zc

Oc

Oi

(u0, v0)

Pu

P

Camera
co-ordinate system

image 
co-ordinate
system

f Pd

retinal
co-ordinate
system

Image plane
Retinal plane

Yr

Xr

Zr

X
f

P
P

u Xc

Zc
=

Y
f

P
P

u Yc

Zc
=

X X Du d x= + Y Y Du d y= +

D X k rx d= 1
2 D Y k ry d= 1

2 r X Yd d= +2 2

X k Xp u d= Y k Yp v d=

X X ui p= − + 0 Y Y vi p= − + 0

( )
( )

2 4
1 2

2 4
1 2

2 2

C
x d

C
y d

C C
d d

D X k r k r

D Y k r k r

r X Y

= + +

= + +

= +

L

L
k1 is the most important component 
and usuallly sufficient in most 
applications. 

2.3.2.  The Method of Faugeras-Toscani with distorsion 
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Camera Calibration 

( X w ,  Y w ,  Z w ) 3D object point with respect to world co-ordinate system 

Affine transformation. 
Modelled parameters:     R, T  

( X c ,  Y c ,  Z c ) 3D object point with respect to camera co-ordinate system 

Perspective transformation. 
Modelled parameter:     f 

( X u ,  Y u ) Ideal projection on the retinal plane 

Radial lens distortion. 
Modelled parameter:     k1 

( X d ,  Y d ) Real projection on the retinal plane 

Pixel adjustment 
Modelled parameters:     ku, kv 

( X p ,  Y p ) Real projection on the image plane 

Adaptation to the computer image buffer 
Modelled parameters:     u0, v0 

( X i ,  Y i ) Real projection on the image plane   
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Camera Calibration 
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The model is NON LINEAR Iterative minimisation: 
•  Newton-Raphson 
•  Levenberg-Marquardt 
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Computer Vision and Robotics Group - Underwater Vision Lab 

Underwater imaging 

Pinhole camera model 

For example, GoPro Hero cameras have extreme wide-angle lenses: 

Standard distortion models don’t cover all cases! (Wide-angle, fisheye, etc…) 

Using OpenCV 
standard distortion model 



Computer Vision and Robotics Group - Underwater Vision Lab 

Underwater imaging 

𝜃𝑑 = 𝜃(1 + 𝑘1𝜃2 + 𝑘2𝜃4 + 𝑘3𝜃6 + 𝑘4𝜃8)

𝑎 =
𝑥
𝑧 𝑏 =

𝑦
𝑧

Let P=(x,y,z) be a point in 3D coordinates in the camera world frame. The pinhole projection coordinates of P are:

The distorted point coordinates are:

x’= 𝜃𝑑
𝑟 x y’= 𝜃𝑑

𝑟 y

The distorted pixel coordinates are:
𝑢 = 𝑓𝑥 𝑥′ + 𝛼𝑦′ + 𝑐𝑥
𝑣 = 𝑓𝑦𝑦𝑦 + 𝑐𝑦

𝑟2 = 𝑎2 + 𝑏2

𝜃 = atan(𝑟)

Fisheye Distortion Model (Kannala and Brandt, 2006)



Computer Vision and Robotics Group - Underwater Vision Lab 

Underwater imaging 
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Underwater imaging 

Omnidirectional Multicamera Systems (OMS)



Computer Vision and Robotics Group - Underwater Vision Lab 

Underwater imaging 

OMS Calibration

1.Individual Intrinsic calibration
Physical parameters of each camera according to the model used 

2.Extrinsic calibration
Geometric relationship between the cluster of cameras

3.Underwater calibration
Geometric relationship between the cameras and the underwater housing
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Underwater imaging 

Extrinsic calibration



Computer Vision and Robotics Group - Underwater Vision Lab 

Underwater imaging 

Extrinsic calibration

• Take shots of a known poster from different orientations and 
positions

• For every image, find matches between original poster and image
• For every frame image, solve the camera pose problem using initial 

values.
• Optimize parameters and pose of poster for every frame to minimize 

reprojection error through Levenberg-Marquardt algorithm.
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Underwater imaging 

Extrinsic calibration
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Underwater imaging 

Underwater calibration: Ray tracing

𝑣1 = −
𝑛𝑎𝑖𝑟
𝑛𝑃𝑀𝑀𝐴

𝑣0 +
𝑛𝑎𝑖𝑟
𝑛𝑃𝑀𝑀𝐴

𝑣0 · 𝑛1 − 1 −
𝑛𝑎𝑖𝑟
𝑛𝑃𝑀𝑀𝐴

2

· 1 − 𝑣0 · 𝑛1 2 · 𝑛1

sin 𝜃𝑎 · 𝑛𝑎𝑖𝑟 = sin 𝜃𝑔 · 𝑛𝑃𝑀𝑀𝐴
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Underwater imaging 

Underwater calibration
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Underwater imaging 
v Rolling Shutter  

wikipeadia 
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Underwater imaging 
v Rolling Shutter  
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Underwater imaging 
v Rolling Shutter  
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Underwater imaging 
v Rolling Shutter  

    It is still an open research problem 

    Camera Pan         Image Plane Rotation       Moving objects  



VICOROB   
http://vicorob.udg.edu/ 

COMPUTER VISION AND ROBOTICS GROUP  
UNDERWATER VISION LABORATORY 

http://vicorob.udg.edu/ 


